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Introduction
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O
n-line social network platforms such as Twitter, Facebook, LinkedIn and

many others have become so pervasive today (featuring several hundred mil-

lion users worldwide) that youngsters may have a hard time imagining the world

without them. Even adults may be surprised to realize that the three mentioned

platforms were invented less than a decade ago. Indeed, expressions like viral

marketing, meme, post, and hashtag have become part of our vocabulary in recent

years. Mobile phones and Internet access, which directly and indirectly permeate

countless aspects of our daily lives, have also quickly become ubiquitous since

their commercialization two decades ago. Simultaneously, the costs of telecom-

munications and information technologies decreased sharply, allowing real-time

information processing and massive tracking of user activity in an e�ort to create

an intelligent and personalized interaction with this omnipresent technology.

User tracking data may be mined by corporations to optimize their opera-

tions, to learn customer preferences and o�er product recommendations [Leskovec

et al., 2007]; it may be used by governments to gather intelligence and monitor

crime [Latapy et al., 2013] and by the general public to obtain detailed information

on disasters and riots [Ball, 2011, Doan et al., 2012]. This increasing digital pres-

ence and information sharing also raises novel issues regarding the relationship of

individuals and their data, notably in terms of intellectual property law and pri-

vacy [Lessig, 2002, Fertik and Thompson, 2010]. In addition to the highly valuable
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practical implications mentioned, massive user tracking o�ers a unique opportu-

nity to study large-scale networks and emerging complex collective behavior from

local interactions therein.

The interest in emergent behavior and complex pattern formation has a long

history in philosophy and natural sciences, being discussed notably by Aristo-

tle [Tredennick, 1933], John Stewart Mill [Mill, 1843], the economist Frederick

Hayek [Hayek, 1948] and the evolutionary biologist Julian Huxley [Huxley and

Huxley, 1947] among other renowned thinkers. The challenge of dealing with

complexity is inherent in scienti�c inquiry, although conventional scienti�c �elds

focus on particular “scales of reality”. For example, although in theory animal

behavior could be studied in terms of atom interactions – since organisms are com-

posed of cells, which can be described in terms of molecule interactions, which are

ultimately made up of atoms – in practice the study of each of these scales is done

by specialized �elds, namely ethology, cell biology, biochemistry and molecular

physics. Nonetheless, as the applied mathematician-turned-social scientist Duncan

Watts points out:

“Increasingly, the questions scientists �nd more interesting – from the ge-

nomics revolution to the preservation of ecosystems to cascading failures in power

grids – are forcing them to consider more than one scale at the time, and so to

confront the problem of emergence head-on” [Watts, 2011].

This micro-macro issue is not restricted to the natural sciences: it is fun-

damental to economics [Smith, 1789, Schumpeter, 1909, Klein, 2012] and social

sciences [Granovetter, 1978, Ritzer, 2007]. Indeed, individuals are embedded in

social networks and interactions occur in within this network. However, char-

acterizing and analyzing social ties in detail has been historically laborious and

generally impractical to implement at large-scale. Hence the possibility to leverage

the information technology and the on-line social interaction data to shed light

on micro-macro questions has interested a growing number of researchers. Inter-

estingly, these researchers are not only social scientists, but also mathematicians,

computer scientists, physicists and others. See [Freeman, 2004] for a comprehen-
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sive account of social network analysis development.

Among the various instances of micro-macro issues in the intersection of nat-

ural and social sciences is the phenomenon of di�usion and cascading behavior:

this phenomenon is characterized by the spread of information through a process

of individual-to-individual contagion. Though contagion and social in�uence were

a concern since ancient times, the systematic analysis of these phenomena was

ignited in the late 19th and early 20th century with contributions from social

sciences [Le Bon, 1895, de Tarde and Parsons, 1903] and epidemiology [Kermack

and McKendrick, 1927]. Since then, new models and re�nements appeared along

with new empirical data. However, until recently su�ciently detailed large-scale

data was unavailable to validate the micro foundations of di�usion models.

Di�usion phenomena are a class of propagation phenomena characterized by

the spread of information or physical objects through some process of individual-

to-individual contagion: classics examples are biological viruses such as HIV. In

this case, starting with a small number of infected individuals, this virus spread to

thousands of individuals in a relatively small amount of time. This bursty behavior

is common to many viruses, but it is also possible that di�usion spreads slowly or

that it dies out before reaching a signi�cant portion of the population. See example

in Figure 1.1.

Figure 1.1 – A spreading cascade example: early, middle and �nal stages. This was an on-line
experiment where an applet called “Happy �u” spread among users. [Friggeri et al., 2011].

This thesis consists of a data-driven investigation of a real-world information

di�usion on a large-scale social network using on-line �le sharing traces. More
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precisely, we identify key real spreading cascade properties and examine the capa-

bility of standard models to reproduce these properties.

In the following, we present a survey on di�usion and cascading behavior

studies and we end with an overview of the thesis and its contributions.

1.1 Context and Survey

1.1.1 Complex networks

A common feature in the micro-macro issues mentioned in the previous sec-

tion is the presence of pairwise relations between parts of a system, which can

be modeled in terms of networks. Examples include food webs and ecological

networks, power grids and the World Wide Web, friendship and collaboration net-

works, which are instances of biological, technological and social networks. These

networks are rich objects in their own right and often constitute the structure on

which interesting dynamic takes place, such as “viral” di�usion and content search.

More formally, we can represent these networks with the mathematical notion of

graph, denoted G = (V,E) and characterized by a set of nodes V and a set of links
between nodes E, which can be directed or undirected (undirected links are also

called edges). Although the term “network” may occasionally imply more informa-

tion than “graph” in certain scienti�c communities, in this work we consider both

terms as synonyms and use them interchangeably. See [Bollobás, 1998, Diestel,

2010] for modern references on graph theory and [Easley and Kleinberg, 2010] for

applications.

Real-world networks

In recent years a growing number of empirical studies of real-world large-scale

networks have been developed, particularly taking advantage of on-line platforms.

Wikipedia is a case in point: this open, collaborative on-line encyclopedia has

tracked the activity of each editor and each entry since its inception. This allowed
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the study of the collaboration network of editors, connected if they worked on

the same entry [Crandall et al., 2008, Kittur and Kraut, 2008]. On-line games also

provide novel instances of such networks, e.g., the graph of World of Warcraft

players who have taken part in common raids or activities [Wotal et al., 2006].

Scienti�c collaboration has attracted attention before the Internet, notably with

the works of Derek de Solla Price – who developed a theory of the growth of

citation networks, based on what would now be called a preferential attachment

process [Price, 1976]. This theme was echoed and expanded with the advent of

on-line indexing platforms [Newman, 2001].

Another class of real-world networks, similar to citation networks and loosely

termed information linkage graphs are characterized by massive and diverse

datasets, typically from the World Wide Web: nodes are pieces of information

linked together. Examples include the network of web pages connected by hyper-

links [Kleinberg et al., 1999, Huberman and Adamic, 1999], blogs and linkages

among bloggers [Kumar et al., 2004, Leskovec et al., 2007, Salah Brahim et al.,

2011], product reviews and users on shopping sites [Guha et al., 2004] and Twitter

accounts and followers [Sharma et al., 2012]. An important example of networks

which reveal social ties and infrastructure are communication networks, which

represent individuals who have had a recorded conversation. Evidently, the content

of the conversations is generally private and therefore inaccessible or hidden on

purpose to preserve anonymity; instead, researchers generally work with metadata

concerning these interactions, particularly who-contacted-whom, occasionally as-

sociated with a time stamp. Empirical studies of these networks include long-range

communications, such as mobile phone [Onnela et al., 2007], students exchanging

emails [Kossinets and Watts, 2006] and instant-messaging [Leskovec and Horvitz,

2008] as well as short range communications, such as the contact networks of

participants in a conference [Isella et al., 2011] and in a roller skate event [Neiger

et al., 2012].

We close this section with an important class of real-world networks: natural

networks, particularly from biology. Examples include the structure of neural

connections within an organism’s brain [Sporns et al., 2004], food webs – nodes

represent species and links prey-predator relations [Dunne, 2006] – and metabolic
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networks – nodes are functional compounds and links chemical interaction be-

tween them [Barabási and Oltvai, 2004].

Structural properties

Despite the generality of the characterization of networks and the diversity

of contexts they are found, the empirical works mentioned previously found a

set of non-trivial structural (or topological) properties common to a wide-range

of observed real-world graphs, mainly: small diameter, heavy-tailed node degree

distribution and global sparsity/local density. Thus, these networks were generally

labeled complex networks.

A graph is said to feature a small diameter if for each pair of nodes there exists

a path connecting with whose length smaller than some small constant. In the

context of social networks this property has a relatively long story, beginning with

the 1929 play Chains by Hungarian author Frigyes Karinthy, where the concept

appeared stylized as “six degrees of separation,”: i.e., that any two individuals

could be connected through at most �ve acquaintances generally. In academia,

this concept was echoed in a landmark experiment by Stanley Milgram in 1967: he

sent several packages to 160 random people living in Omaha, Nebraska, asking

them to forward the package to an acquaintance who they thought would bring

the package closer to a �nal individual in Boston, Massachusetts. He reported that

chains varied in length from two to ten intermediate acquaintances, with a median

of �ve intermediate acquaintances [Travers and Milgram, 1969]. A recent study

reported a similar value: the average chain of contacts between users of Microsoft

instant-messaging system was 6.6 people [Leskovec and Horvitz, 2008]. The same

property was observed in citation networks [Newman, 2001], the collaboration

network of actors [Watts and Strogatz, 1998] and elsewhere [Kleinberg, 2006].

In terms of node connectivity, recent studies have observed heavy-tailed
1

node degree distribution, i.e., the frequency of the number of node neighbors in

1. Heavy-tailed distributions are probability distributions whose tails are heavier than the

exponential distribution. More precisely, let X be a random variable with distribution F on

R and tail function F̄ (x) = P(X > x), x ∈ R. The distribution F is heavy-tailed if

lim supx→∞ F̄ (x)eλx =∞ for all λ > 0. See [Foss et al., 2013] for further properties.



1.1. Context and Survey 19

the graph [Newman, 2010]. In particular, some studies have reported power-law

degree distributions
2

in real-world graphs such as the autonomous system of the

internet [Faloutsos et al., 1999] and the Web [Kleinberg et al., 1999, Barabási and

Albert, 1999, Adamic and Huberman, 2001]. Power-law distributions – sometimes

referred to as “scale-free” distributions – had been found in di�erent contexts,

notably counting the frequency of in natural languages [Zipf, 1948] and examining

income distributions [Pareto, 1897]. Despite universal character, a number of

studies in network analysis have been questioning the empirical methods used to

�t such distribution [Clauset et al., 2009, Kolaczyk, 2009]. In particular, Jackson

and Rogers show how some allegedly scale-free degree distributions are better

�tted by other heavy-tailed distributions [Jackson and Rogers, 2005]. In sum,

though heavy-tailed degree distributions have been observed consistently, well

�tted power-law distributions have been shown to be rarer.

Complex networks have also been reported to be globally sparse – meaning

that nodes are typically connected to few other nodes –, but featuring high local

density, measured in terms of a clustering coe�cient [Watts and Strogatz, 1998]
3
.

More precisely, these networks feature a high clustering coe�cient relative to what

would emerge if links were determined by an independent random process [New-

man, 2001]. Ideas behind clustering have been important in social sciences since

Simmel [Gurcel and Watier, 2002], who pointed out the interest in triads (triples

of multiple connected nodes). Empirical results have found high local clustering

in actor collaboration networks [Watts and Strogatz, 1998], in the Web [Adamic,

1999], in dating networks [Liljeros et al., 2001] and other places. In connection to

this property is the question of community detection, which spawned an entire

�eld of research dedicated to develop methods to cluster nodes in terms of their

connection patterns (See [Fortunato, 2010] for a comprehensive account of the

�eld).

2. A (positive) power law distribution is a heavy-tailed distribution featuring a tail function

which is asymptotically given by a power-law, that is: F̄ (x) ∼ (xmin/x)α as x→∞, with a scale

parameter xmin > 0 and a shape parameter α > 0. It has all moments of order γ < α �nite, while

all moments of order γ ≥ α are in�nite.

3. The local clustering coe�cient Ci for a vertex vi ∈ V is then given by the proportion of

links between the vertices within its neighborhood divided by the number of links that could

possibly exist between them. Let Ni is the set of neighbors of vi and di = |Ni| its degree. The

corresponding local clustering is Ci = |{(vj , vk) ∈ E : vj , vk ∈ Ni}|/(di(di − 1)).
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1.1.2 Di�usion and cascading behavior

Researches have been trying to characterize and model epidemic dynamics

systematically since the early 20th century. Other individual-to-individual spread-

ing phenomena have attracted the attention of researchers, namely the spread of

ideas and social norms. More recently, a number of works reported the di�usion

of on-line information such as links, �les and memes. Asserting the in�uence of

individuals and the detailed mechanisms of contagion in such contexts is challeng-

ing. The �rst issue is to decompose the evolution as a result of multiple individual

interactions. Secondly, even when we can model the spread in terms of individual

actions, it is not obvious how to model individual behavior. Nevertheless, re-

searchers developed models inspired in epidemiology to describe general features

of social di�usion phenomena.

At the same time, empirical studies have documented a wide range of di�usion

phenomena with increasingly more detail. Indeed, the punctual spread of informa-

tion from individual to individual has been di�cult to observe until recently. This

picture has changed with the emergence of on-line platforms: one may observe the

spreading in greater detail. In the following, we will present a survey of theoretical

and empirical results on di�usion and the main open challenges in the domain.

Di�usion models

The �rst di�usion model formalized in mathematical terms, which captures

the spreading as described above, was proposed by Kermack and McKendrick [Ker-

mack and McKendrick, 1927, Anderson and May, 1991, Andersson and Britton,

2000], focusing on the global evolution of the infected population. In its simpler

setting, the model partitioned the population in two groups, a susceptible and an

infected group, and made a few assumptions on the spreading behavior, namely

that the number of infected individuals growth is initially proportional to the

current number of infected individuals, reaching saturation point as most individ-

uals become infected. These relations were formalized in terms of deterministic

di�erential equations which could be used to determine the long term behavior of
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the disease. Extensions of this model considered supplementary population parti-

tions corresponding to other classes of individuals such as exposed or recovered

individuals (or removed individuals if the disease is lethal). This compartmental

models are globally known in the literature as compartmental models or simply

SIR models, in reference to the widest-known model in this category.

Outside the context of epidemiology, a landmark model was proposed by Bass

in 1969 [Bass, 1969] for the adoption of innovations. The analogy with epidemic

models is explicit: an infectious object (an idea, a product or a behavior) is assumed

to spread from infected to susceptible. The goal of this model is also to capture the

global dynamic of the population in terms of these classes of individuals, similarly

to the SIR models. The evolution of one compartment depends on the relative size

of the other compartments, and it is formalized with di�erential equations. The

key feature of this model is the adoption curve, a S-shaped curve which tracks the

fraction of adopters relative to the total population over time.

Both models were formulated with limited support from empirical observa-

tions and thus assumed a quite general spreading behavior. Indeed, an underlined

hypothesis of both models is that individuals in one compartment have the same

in�uence on another compartment, that is, in�uence is distributed uniformly in the

population. Social network analysis, however, has shown that certain individuals

are much more connected than others. In addition, we know that the behavior of

individuals can be quite heterogeneous: for example, in the context of sexually

transmitted diseases, some individuals have much more partners and are more

active than others. To account for these heterogeneities, in recent years these

models were adapted to feature the underline network structure of individuals:

in this case, the spreading behavior is centered on the individual and his or her

neighborhood in the network.

Epidemic di�usion was adapted to the network setting, drawing from per-

colation theory: in this case, it is assumed that an individual can only infect its

neighbors on the network. With these models it is possible to describe the same

quantities as those of previous models, namely the fraction of infected individuals,

aggregating the local behavior of every individual of the population. Since the
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adaptation of these models to this context, a number of studies was performed in-

vestigating the global asymptotic behavior of the epidemic in terms of the network

topology. In particular, this was simulated on a number of real world networks.

Novel questions were addressed such as, given a certain network, what is the

optimum vaccination strategy or how to select the best set of initial nodes to

ignite an epidemic [Pastor-Satorras and Vespignani, 2001, Kempe and Kleinberg,

2002, Leskovec et al., 2007].

An alternative model based on local dynamics was introduced in 1978 by Gra-

novetter [Granovetter, 1978] and improved upon recently [Kempe and Kleinberg,

2002, Dodds and Watts, 2005]. Like the network version of the SIR models, Watts

and Dodds’ model also makes an assumption on the spreading behavior of individ-

uals. However, instead of assuming that one individual may infect its neighbors,

this model assumes that each individual adopts a piece of information if a certain

number (or fraction) of its neighbors adopted it as well – i.e., an individual’s deci-

sion is triggered by its surrounding. These adoption/threshold models also yield

cascading behavior, but they are not equivalent to epidemic models [Dodds and

Watts, 2005]).

Empirical studies

Until recently, empirical data on di�usion phenomena, mainly epidemic out-

bursts and product adoption, consisted of aggregated data like the number of

infected individuals on a given time. As mentioned previously, identifying punc-

tual individual to individual transmissions is challenging at large scale. In some

cases, like for the in�uence exerted by individuals, this is not directly accessible,

so empirical studies have focused on proxy measurements and assumptions about

the link between these measurements and in�uence itself.

Recent technology, particularly on-line platforms, allowed the observation of

detailed large-scaled di�usion phenomena, namely di�usion on blogs [Adar and

Adamic, 2005], e-commerce [Leskovec et al., 2006], mobile phone networks [Onnela

et al., 2007], on-line gaming [Bakshy et al., 2009] and social networking [Sun et al.,



1.1. Context and Survey 23

2009, Bakshy et al., 2011, Goel et al., 2012]. These new datasets also uncovered the

di�usion trail that is not only the information of who received an information at a

given time, but also by whom this information is sent. Hence, for a given spreading

information, one can construct the corresponding spreading cascade, a directed

graph connecting infected individuals with whom they obtained the information.

In particular one can compute the length of the path connecting the original source

of information to any given node in this graph and related measurements such as

the maximum path length between two nodes of the graph, termed the cascade

depth, and the internal density of the cascade.

Another important aspect of these new data is the possibility to compare and

improve di�usion models. As mentioned previously, these models have local

spreading rules, which depend upon the underlying network. Therefore, in order

to test the local spreading assumptions, it is necessary to know both the underlying

network and the spreading trace. Until recently, there have been few examples

in the literature of open data sets of large scale di�usion phenomena featuring

the di�usion trace and the underlying network. In some cases you may know

the network but miss the complete di�usion trace. An example is the di�usion of

content in blogs: in a highly heterogeneous media environment, content di�usion

is likely a combination of interpersonal spreading and more traditional media

channels. In other words, people may post something on a blog after seeing it on

a friend’s blog or after seeing it on television or somewhere else. In other cases,

on the contrary, you may miss the network, but know the entire di�usion trace

– e.g. e-mail spreading [Liben-Nowell and Kleinberg, 2008] and the Happy �u

experiment [Friggeri et al., 2011]. See Figure 1.2 for a schematic illustration of

empirical shortcomings observing spreading cascades.

Parallel to the advent of newer and more detailed (albeit not generally open)

datasets featuring the spreading cascade and the underlying network, a novel line

of research focused in the reconstruction of the underlying network, using the

spreading cascade and maximum of likelihood optimization techniques [Gomez-

Rodriguez et al., 2012]. Important research e�ort has also been dedicated to the

characterization of on-line di�usion in terms of spreading cascades: recently Goel

et al. proposed di�erent structural metrics to di�erentiate di�usion spreading to
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(b) Nodes reached by di�usion but no trans-
mission links.

Figure 1.2 – Spreading cascades empirical shortcomings.

media broadcast in on-line social networks [Goel et al., 2013].

Finally, despite the variety of di�usion models available, considerably little

attention has been devoted to the development of estimation methods to calibrate

those models. These techniques are fundamental for applications and to assess the

pertinence of the models, given empirical datasets. In this sense, we have identi�ed

two main papers on the subject: one proposing a maximum likelihood techniques

to estimate SIR and adoption models [Saito et al., 2008], but whose framework

is costly and not scalable and [Goyal et al., 2010] which propose an interesting

framework for epidemic models.

1.2 Summary and contributions

As discussed in the literature survey, the understanding of di�usion phenom-

ena has undergo major improvements since its beginnings. A key improvement

came with the introduction of network analysis, which integrated social and tech-

nological networks with the spreading process. More recently, with the advent of

large-scale on-line platforms which keep track of user activity in great detail, the

empirical focus has gradually been shifting from simple aggregated statistics, such

as number of infected individuals, to more complex objects, such as spreading cas-

cades, which encode the di�usion trail. Improvements in di�usion models followed,

but most theoretical results rely on asymptotic analysis and equilibrium / steady

state conditions. Given the complexity of di�usion phenomena, challenges exist
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in numerous fronts: identify the most relevant structural metrics for spreading

cascades, determine the individual in�uence and spreading behavior, establish

compatible models capable of producing realistic spreading cascades.

This thesis presents the following contributions in this context. In Chapter 2,

we identify and obtain a large-scale di�usion trace with a detailed information of

who transmitted the information to whom: �le sharing logs in peer-to-peer (P2P)

network. This level of information is key to assess the hypothesis of standard

di�usion models. Another crucial information is the underlying network where

the di�usion takes place: to this end, we present a framework to reconstruct the

social network of users in this system, related by common interests. We compute

structural statistics for this network and report the same properties featured by

typical complex networks, as discussed in the previous section.

In Chapter 3, we analyze the most standard di�usion model in the literature

and in the context of P2P networks, the SIR model. Supposing the observed spread-

ing cascades were essentially generated by a process with the dynamic of this

epidemic model, we calibrate the model parameters with the data, perform model

simulations and compare them to the real cascades. We show that this model is

unable to reproduce key topological features of spreading cascades. Moreover, this

observation remains true for natural extensions of this model, featuring peer and

�le heterogeneities. We also propose an a�nity measure to re�ne the underlying

network and analyze spreading cascades in this re�ned graph.

In Chapter 4 we demonstrate the importance of taking into account temporal

patterns both in terms of underlying network and of the spreading process. We

show how the dynamic interest graph can be reconstructed from the original

interest graph and the connection pattern from users and that it is a key ingredient

to generate realistic cascades in terms of size.

In addition to this empirical study, in Chapter 5 we analyze the impact of the

underlying network structure on simulated spreading cascades using the models

discussed in the previous chapters. In the literature, a substantial amount of inter-

est was given to the asymptotic behavior of the number of infected individuals.
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We examine this question from complementary perspective, investigating the

evolution of the cascade structure in a constrained in time, as the ones observed in

our dataset. In addition, instead of focusing exclusively on the number of infected

individuals, we investigate the cascade structure in terms of the three cascade

properties discussed in the previous chapters. In sum, we assessed the impact of

key topological properties in time-bounded contagion spreading and observed that

the distribution of the number of neighbors of seed nodes had the most impact in

our setting.

We conclude in Chapter 6, summarizing the results obtained and discussion

the perspectives opened by this study. In particular, we explore new avenues in

empirical analysis of spreading cascades, improvements to the framework used

and general questions related to the study of information di�usion.
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I
n recent years on-line platforms have registered a vast amount of detailed

interaction data. This rich data enticed scientists interested in information

di�usion to better characterize large-scale di�usion and examine the long held

assumptions and models on the subject. We subscribe to this move, studying the

di�usion of �les in a peer-to-peer (P2P) �le sharing system. In this chapter we

present the dataset used throughout this thesis, describe how it was obtained

and the framework to reconstruct from it the spreading trail and the underlying

network.

2.1 Measuring real-world information di�usion

As we have discussed in the previous chapter, standard contagion models

are based on local transmission rules which depend upon the structure of the
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underlying network, so in order to study it empirically the data must features both

the spreading trail (who spread what to whom at what time) and the underlying

network. Since the beginning of this thesis, a number of datasets meeting this

criteria appeared in the literature, particularly in the context of on-line social

networks [Bakshy et al., 2011, Dow et al., 2013, Goel et al., 2013]. Some rich

datasets existed previously, but were typically proprietary [Leskovec and Horvitz,

2008]. However, at the beginning of this thesis, a lot of attention was given to the

study of information di�usion on the web, particularly the citation links in blogs,

which were publicly accessible to anyone in the scienti�c community. However,

reconstructing the di�usion trail from citation links has its shortcomings as the

following example illustrates: a blogger views a video link on blog X and posts

it on his blog Y with reference to blog X ; another blogger sees the post on blog

B and decides to post the video link on his blog Z with reference to the original

post on blog X . That is, the blog Y was “shortcut” in the observed spreading trail,

giving the impression that the author of blog Z obtained the information directly

form X , when in fact the information spread through Y . This measurement issue

undermines the empirical analysis of information di�usion, so to overcome it we

decided to study di�usion on a peer-to-peer �le sharing systems, setting up a novel

large-scale di�usion dataset which we make publicly available on-line
1
.

2.1.1 Peer-to-peer �le sharing systems

Peer-to-peer �le sharing systems have evolved into a large tra�c source in the

Internet and established themselves as an important platform for content distribu-

tion [Sen and Wang, 2004, Ban et al., 2011]. They constitute a remarkable case of

interaction between a technological layer (network of computers) where the tra�c

occurs, and a social layer (overlay network of peers, structured by related interests)

where the content spreading occurs. In eDonkey �le sharing systems, one of the

main P2P �le sharing systems, peers connect to a server to query for �les of other

connected peers and to provide �les to fellow peers upon request [Kulbak et al.,

2005]. More precisely, �le sharing can be divided in three steps, which we denote,

respectively, textual query, �le request and P2P �le exchange. First, the client makes

a textual query to the server, which returns a list of available �les in the system

1. Dataset available at: http://www-complexnetworks.lip6.fr/
~bernardes/p2pdata2d

http://www-complexnetworks.lip6.fr/~bernardes/p2pdata2d
http://www-complexnetworks.lip6.fr/~bernardes/p2pdata2d
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(each represented by a unique hash code) whose description matches the textual

query. Next, the peer will choose a subset of �les in this list and make a second

query to the server requesting the unique id of potential providers for each selected

�le. Finally, the client contacts the providers directly and transmission between

them ensues.

In this system, the �rst two steps described above can be observed at the eDon-

key server level, as all �le requests are intermediated by the server. Evidently,

the �le exchange step itself cannot, as the communication is done peer-to-peer.

Nonetheless, it is possible to track the �le di�usion in the system monitoring the

corresponding requests preceding each P2P �le exchange since users and �les are

uniquely identi�ed by the server. Each �le request is decomposed in individual

events which are encoded as 4-tuples in the following format: (t, P, C, F ), where

capital letters represent unique ids. Such a tuple accounts for a request made at

time t of the �le F by the peer C , satis�ed by the peer P . In other words, P is a

provider of the �le F pointed out by the server to the peer C at time t. The spread-

ing trace is composed of all these individual events, as the example in Table 2.1

illustrates.

Time Provider Client File

1 1 2 A

2 1 3 A

3 4 2 B

4 4 1 C

4 5 1 C

5 1 4 D

6 5 6 A

6 3 6 A

7 1 7 C

Time Provider Client File

8 5 8 A

9 4 9 D

10 4 3 B

11 10 5 E

12 9 11 F

13 4 9 C

14 4 12 D

15 9 7 F

Table 2.1 – Example of spreading trace featuring 12 peers and 6 �les. The trace is comprised
of 17 events, displayed in chronological order. Each event represented by a 4-tuple composed
of a timestamp in seconds, two peers (a provider and a client) and a �le. Files are represented
by letters and peers are numbered from 1 to 12. Any peer can be a client, but only peers who
possess a �le can be its provider (either the peer possessed it before entering the P2P system or
acquired it by sharing in the system).



30 Chapter 2. Dataset and Framework

2.1.2 Measurement and analysis

We have obtained a di�usion trace recording these events at the eDonkey

server level, akin to [Aidouni et al., 2009], anonymized due to privacy concerns.

We have parsed the raw measurements in XML and �ltered to the format de-

scribed previously. Monitoring a contiguous time window of T = 170353 seconds

(approximately 48 hours) we have observed 5 380 616 peers, 1 986 588 �les and

471 411 593 �le request events. The requests (represented by the tuples described

previously) can be grouped in terms of peers or �les, as illustrated in Figure 2.1,

revealing temporal patterns which will be explored in further detail in Chapter 4.

Request profile for some selected peers
???
???
???
???
???
??

time ??

Request profiles for some selected files
420
189
142
102
41
26

time ?0

Figure 2.1 – Request pro�les of six clients and six �les. Dots represent requests in each time
line corresponding to a peer or a �le.

The estimation methods and simulations proposed in the following chapters are

numerically expensive in terms of resources, so we have decided to work with a sub-

sample of this dataset, corresponding to the �rst 8 hours of measurements, which is

still large-scale in terms of the number of peers, �les and transmission events, but

that could be manageable without an enormous engineering infrastructure. Indeed,

letP be the set of all peers andF the set of all �les exchanged in our subsample. We

have |P| = 1 908 500 peers, |F| = 801 280 �les and 22 944 800 �le transfer events.

The Figure 2.2 shows, events (individual �le requests) arise almost linearly

with time and the number of registered peers and �les follows a trend with �uc-

tuations which may be due to circadian cycle patterns. Thus, the subsample in

question preserves important characteristics of the original dataset in terms of

rate of observations of new events, peers and �les. Circadian patterns, however,

are likely unobservable in the subsample, but the shorter time window may o�er

counterbalancing advantages. Namely, it reinforces the likelihood that essentially

all the spreading of �les in the period were due to �le sharing on the network.

Indeed, peers receive and share �les not only through P2P �le sharing systems but
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they also do it through other non-observable means, such as using physical devices.

However, �le sharing in di�erent channels is not done in the same speed nor with

the same frequency, and though we cannot guarantee that there was no inter-

ference due to o�-line sharing, it seems reasonable to neglect it in this time window.

Figure 2.2 – Evolution in the number of observed events (individual �le requests), peers and
�les in the P2P sharing system during 48 hours of contiguous measurement.

Let D be the set of all recorded tuples in the subsample (henceforth denoted

simply dataset). Before we begin a more structured study of di�usion in the next

section we highlight some basic �le sharing statistics of the trace D. First, we

present two statistics related to the typical number of interested peers per �le: the

median number of interested peers per �le, 5, and the average number of interested

peers per �le, 14.73, with standard deviation 34.74. Second, we estimate the number

of �les commonly shared by peers: median number of �les shared by peers is 3

and the average is 6.19, with corresponding standard deviation 12.66. These values

suggest an heterogeneous distribution for both properties, as we shall see later

in the following sections. Another important aspect of our P2P trace in terms of

�le sharing statistics is the abundance of free-riders – that is, peers who bene�t of

shared �les in the system, but who do not share back. In our dataset, while 99.63%

of the peers are clients (i.e., have requested a least one �le) only 4.33% of them
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have supplied �les.

Heterogeneous �le sharing behavior and high proportion of free-riders have

been observed in the literature, in P2P �le sharing systems. A measurement study

of the Gnutella �le sharing system [Adar and Huberman, 2000] found that approx-

imately 70% of peers provide no �les and that the top 1% of the peers provide

approximately 37% of the total �les shared. Similar patterns have been observed

in subsequent studies of Napster and Gnutella system [Saroiu et al., 2002]. In

2005, [Hughes et al., 2005] found free-riders have increased to 85% of all Gnutella

users. Similar patterns were also observed in the eDonkey system [Handurukande

et al., 2006].

2.2 Spreading trace

The focus of this work is the study of real-world di�usion, in terms of its

spatiotemporal structure. In oder to make this notion precise, be begin de�ning

the main object of analysis, namely the spreading cascade, which represents the

di�usion trail of each �le in the P2P system, as recorded in the spreading trace.

We also identify the initial providers or seeds for each �le, which will be necessary

in later chapters.

2.2.1 Spreading cascades

For a �le F , the spreading cascade is a directed graph featuring the set PF of

peers who have participated in the spread of F (as clients and/or providers) and

links P → C , connecting each client C with the �rst peer(s) who provided F to it.

More formally, let τF (C) = inf{t : (t, ·, C, F ) ∈ D} be the �rst instant C obtained

F and let the directed graph KF = (PF ,LF ) be the spreading cascade of F , with

PF = {P ∈ P : (·, P, ·, F ) ∈ D ∨ (·, ·, P, F ) ∈ D}

LF = ∪C∈PF
{(P,C) ∈ PF × PF : (τF (C), P, C, F ) ∈ D}
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A client requesting a �le may receive a response from potentially several

providers simultaneously, which implies that nodes in the cascade graph not only

have multiple outgoing links, but also multiple incoming links in general The

causality induced by the fact that we only consider the links corresponding to the

�rst time a node received F prevents the appearance of cycles. Hence the cascade

is in fact a directed acyclic graph (DAG). As an example, in Figure 2.3 we construct

a spreading cascade for each �le in the spreading trace in Table 2.1.

Time Provider Client File

1 1 2 A

2 1 3 A

6 5 6 A

6 3 6 A

8 5 8 A

3 4 2 B

10 4 3 B

4 4 1 C

4 5 1 C

Time Provider Client File

7 1 7 C

13 4 9 C

5 1 4 D

9 4 9 D

14 4 12 D

11 10 5 E

12 9 11 F

15 9 7 F

Figure 2.3 – Spreading trace from Table 2.1, with events rearranged, sorting by �le, in
chronological order (above) and corresponding spreading cascades (below). Each peer is
represented by a node in the graph and each event is represented by a dotted arrow, connecting
provider to client. Each �le is represented by a color and arrows are colored accordingly.
Timestamps are not directly represented in this directed acyclic graph, though the chronology
of the events can be found following the edges of the cascade.

The �rst key property encoded in the spreading cascade of a given �le F is

the number of nodes who possess it at the end of the observed period, which is

given by the size of the cascade |PF |. We also explore two other key topological
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properties of the cascade, namely its depth and number of links. The former is

de�ned as the length of the longest path on the cascade and captures the maximum

number of hops from peer to peer that the �le has undergone before it was relayed

from a provider to a client. The number of links, given by |LF |, combined with the

size of the cascade gives information on the sharing pattern of the network. For

example, in Figure 2.3, the corresponding cascade to the �le A has size 6, depth 2

and 5 links.

From the P2P trace log we have constructed the spreading cascades for each

observed �le and computed the above mentioned features. The distribution of

these cascade features is presented in Figure 2.4. First, we observe that the cascade

depth distribution is well �tted by a power-law. Examining individual cascades

with high depth we realize that they are not typically big in terms of size. Second,

most spreading cascades are quite small, featuring one or few nodes and links

– these cascades are essentially trivial trees. The cascades with higher number

of links, however, display a richer structure. In fact, the ones with the highest

number of links cannot be tree-like, since their number of links exceeds (by far)

the maximum cascade size observed in our dataset.

Figure 2.4 – Complementary cumulative distribution of key properties (depth, size, links) of
real spreading cascade.
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2.2.2 Initial providers

Another relevant spreading data concerns the initial providers or seeds for each

�le F , namely the set of peers that possessed it prior to any transfer activity on the

observed trace. These nodes are the origin of the spreading cascades, triggering

the di�usion of the �le F . This information can also be inferred from the request

log and be determined in the following way. Let CF (t) = {C ∈ P : (t′, ·, C, F ) ∈
D, t′ < t} be the set of peers who requested F prior to t. We de�ne the set of

initial providers of F as the set of peers P who have provided F at some time t,

without having obtained it before t from another peer in the network:

IF = {P ∈ P : (t, P, ·, F ) ∈ D, P /∈ CF (t)}

To illustrate this concept, consider the spreading trace in Table 2.1: the set

nodes of each spreading cascade corresponding to a �le can be partitioned into a

set of initial providers and another of clients:

File Clients Seeds

A 2, 3, 6, 8 1, 5

B 2, 3 4

C 1, 7, 9 4, 5

D 4, 9, 12 1

E 6 10

F 7, 11 9

Table 2.2 – Spreading cascade nodes partitioned into seeds and clients: sample trace from
Table 2.1.

Plotting the complementary cumulative distribution of the number of initial

providers for the spreading cascades (Figure 2.5) we obtain an interesting curve, re-

vealing a scale-free distribution. This means that although most spreading cascades

in our observation have few initial providers, there is a non negligible fraction of

cascades with a large number of initial providers.
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Figure 2.5 – Complementary cumulative distribution of the number of initial providers.

2.3 Underlying network

As discussed in the introduction, our goal is to investigate and model spread-

ing cascades on the social network of peers participating in the P2P system in

question. In order to analyze the empirical spread of �les among peers in the light

of detailed network di�usion models mentioned, we need not only the detailed

chronological data of who transmitted the information to whom (observable in the

trace) but also the social network on which the di�usion takes place. As pointed

out in [Gomez-Rodriguez et al., 2012] it is challenging to reconstruct the network

on which the di�usion takes place.

Focusing on content di�usion among peers, it is natural to consider the interest
graph in which each node represents a peer and each edge joining two peers stand

for common interest. Interests connecting peers may include broad subjects such

as open source software, folk rock or French literature or narrower ones such as

movies by Quentin Tarantino, a particular computer game or pictures of Beijing.

It is reasonable to suppose that peers store and share content related to their inter-

ests and, likewise, peers will search for content matching their interests. Hence

the di�usion of �les among peers takes place on the interest graph and occurs

from neighbor to neighbor. Indeed, if a peer P provides a �le F (corresponding

to a music album for example) to another peer P ′ then there is a link between
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them in the interest graph, since both are interested in the same content, namely F .

One strategy to unfold this network in our context is to explore relations among

peers and their common shared �les. Such strategy was hinted in [Handurukande

et al., 2006] and developed more substantially in [Latapy et al., 2008, Iamnitchi

et al., 2011, Bernardes et al., 2012]. We follow this approach to reconstruct the

underlying social network as well.

2.3.1 Bipartite structure of the data

The trace D captures directly a relationship between �les and peers who share

them. A natural way to organize these relationships is through a bipartite graph
B = (P ,F ,A), a graph de�ned by two disjoint sets of nodes P and F and a set

of links A ⊂ P × F between a node in one set and a node in the other set. In our

case, we construct the bipartite graph with the disjoint sets of all peers and all �les

in our data and for each recorded event in (t, P,X, F ) ∈ D we add a link to A,

connecting the �le F to the peers P and X , that is:

A = {(P, F ) ∈ P × F : (·, P, ·, F ) ∈ D ∨ (·, ·, P, F ) ∈ D}

where (·, ·, P, F ) ∈ D represents a recorded event in which some peer provided the

�le F to the peer P at some point in time and, likewise, (·, P, ·, F ) ∈ D represents

a recorded event in which P provided the �le F to some peer at some point in time.

In other words, B is the bipartite graph in which peers are linked to the �les

which they have provided or sought. The degree of peers and �les in this bipartite

graph represents the number of �les transfered by a peer and the number of peers

who shared a �le, respectively.

As mentioned in the previous section, the degree of peers and �les in this

bipartite graph represents the number of �les transfered by a peer and the number

of peers who shared a �le, respectively. Thus, we can relate it to the �le sharing

observations made in the beginning of the chapter. Indeed, as Figure 2.6 con�rms,
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the degree distribution of both peers and �les is heterogeneous and mostly concen-

trated on small values with all degree values for peers and �les remain below 104.

Figure 2.6 –Complementary cumulative degree distributions of peers and �les on the bipartite
graph B.

2.3.2 Interest graph

It is beyond doubt extremely di�cult in a large scale interaction network to

know precisely whether any two individuals have a common interest. From the

information encoded in B it is possible to draw relationships between the peers,

projecting the bipartite graph on the set P [Diestel, 2010]. The projected graph

G = (P , E) consists of a set of nodes P (the set of peers) and a set of links between

these nodes E , de�ned in the following way: two peers are connected if they have

at least one neighbor in common (in F ) in the bipartite graph, that is:

E = {(P, P ′) ∈ P × P : ∃F ∈ F , (P, F ) ∈ A ∧ (P ′, F ) ∈ A}

This projection provides an approximation of interest graph described in the in-

troduction of the section
2
, for it connects any two peers who have manifested a

common interest during our observations. We give in Figure 2.7 an illustration

2. For the sake of readability the approximated interest graph will be henceforth denoted simply

interest graph.



2.3. Underlying network 39

of this method applied to the sample trace given in Table 2.1. We �rst construct

the bipartite graph of peers and �les using the trace. Secondly, we obtain the

interest graph projecting the bipartite graph in the set of peers. Notice that, by

construction, the spreading of �les takes place in the interest graph and occurs

from neighbor to neighbor.

The interest graph obtained from the observed bipartite graph (as explained

above and in Figure 2.7) has a single giant connected component containing es-

sentially all nodes (99.99%), density 2.62× 10−4 and diameter 13. In Figure 2.8a

we have plotted the degree distribution for the peers: considering the set of all

peers, the median degree is 118 and the mean value is 500.11, with corresponding

standard deviation of 1271.42. We proceed to a �ner analysis of the degree distri-

bution, grouping peers in categories (Figure 2.8a). Let us consider �rst the set of

clients C ∈ P such that (·, ·, C, ·) ∈ D: i.e., peers having requested �les during

our measurements. Their degree distribution superposes the degree distribution

of all nodes. This is due to the fact that 99.63% of peers in our observations

have requested at least one �le, so the clients degree distribution is essentially

the global degree distribution. A much more restrictive category is the set of

providers P such that (·, P, ·, ·) ∈ D, i.e., peers having supplied �les during our

measurements. Their degree distribution has a similar shape, but it is concentrated

on larger values, indicated by a median of 1821 and an average degree of 2906.54

– with corresponding standard deviation of 3471.80. The last curve, superposing

the curve corresponding to the providers, represents the degree distribution of the

initial providers. We have also computed the clustering coe�cient (See chapter

I for a discussion and de�nition) of the peers in the interest graph (Figure 2.8b):

we observe a wide range of clustering values, each represented by a signi�cant

fraction of peers. Also, the distribution shows a relatively high fraction of peers

with a high clustering coe�cient – which is a feature of real complex networks, in

contrast to random graphs.
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(a) Bipartite graph constructed from sample trace in Table 2.1,
featuring 6 �les (top) and 12 peers (bottom).
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(b) Interest graph as the projection of the bipartite graph above.

(c) Sample spreading cascades (Figure 2.3) superposed on interest graph.

Figure 2.7 – Interest graph construction and relation to the spreading cascade.
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(a) Degree distributions on the interest graph.
Superposed curves: all peers and clients,
providers and initial providers

(b) Complementary cumulative clustering co-
e�cient distribution in the interest graph.

Figure 2.8 – Interest graph structural properties

2.4 Summary

We close this chapter with a brief summary: we obtained an open dataset

containing a large-scale di�usion trace from �le sharing in P2P systems. First we

reported �le sharing properties of this dataset found in peer-to-peer literature,

namely a heterogeneous �le sharing behavior among peers and an overwhelming

presence of free-riders [Handurukande et al., 2006]. Secondly, we examined the

di�usion cascades obtained from the trace and observed that spreading cascades

are mostly trivial with a small proportion cascades featuring complex topological

structure, also in agreement with the literature [Leskovec et al., 2007,Liben-Nowell

and Kleinberg, 2008, Goel et al., 2012]. In particular, key properties of spreading

cascades are heavy-tailed, with cascade depth distribution featuring a scale free

distribution.

Third, we have introduced a framework to infer the interest graph of peers, on

which the spreading of �les takes place. This graph connects essentially all peers,

which can be grouped in two categories: providers and clients. Most peers in our

observations are clients, but only a small fraction supply �les and there is a sharp

distinction between clients and providers in terms of their degree distribution. The

structural properties of the interest graph – namely diameter, degree distribution

and local clustering – are congruent with the literature on complex networks, as
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discussed in the previous chapter.

In sum, the obtained dataset is a legitimate candidate to study large-scale

di�usion and it allows us to assess the pertinence of di�usion models since it

provides detailed information on the spreading process and the underlying social

network of peers.
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As discussed in the �rst chapter, epidemic/contagion models are ubiquitous

in the literature to describe empirical data (from epidemic to viral marketing to

P2P �le spreading) and to generate arti�cial di�usion. In particular the network

version of the SIR model has been used since it is relatively simple and analytic

tractable asymptotically. In the literature, some authors have been able to select

parameters for SIR models such that they could generate simulated cascades similar

the real cascades they have observed. In the following we take one step forward,

by assessing if the spreading model is compatible with the data, if we calibrate

the model assuming the observed di�usion is described by the model in question.

That is, instead of of extensively searching the parameter space of the models for

interesting values, we use a standard framework to estimate the model parameters

from the data. We then simulate the calibrated model to generate arti�cial cascades
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which we compare to real cascades.

In this chapter being examining the standard, simple SIR model as a baseline

model and explore natural extensions of this model which capture heterogeneities,

particularly in terms of peer behavior and �le popularity. We also introduce an

a�nity measure among peers and examine an extensions of this model which take

this measure into account.

3.1 Simple SIR model

We begin examining simple SIR model, generating simulated cascades and

comparing them with real ones to assess how realistic this model performs on the

interest graph, in terms of the following cascade properties: size, depth and number

of links. Note that by realistic, we mean able to reproduce the characteristics of

the data as we measured.
1

In our setting the SIR model dynamic is as follows: each �le spreading corre-

sponds to an independent epidemic in the interest graph, in which each node is

in one of the following states: susceptible, infected or non-interacting (sometimes

named removed, hence the acronym SIR). Susceptible nodes do not possess the �le

and may receive it from an infected node, thus becoming infected. Each infected

node, in turn, spreads the �le to each of its neighbors, independently, with probabil-

ity p and becomes promptly non-interacting thereafter. Although non-interacting

nodes remain in this state, infected nodes may unsuccessfully try to infect them.

Supposing the observed di�usion trace is the result of such a simple SIR epi-

demic we may estimate the spreading parameter p. Each neighbor-to-neighbor

1. The problem of improving the measurement process is di�erent from the one of identifying

relevant models able to capture the features observed in the data, which is our focus. Indeed, our

goal is to assess the ability of the models to reproduce (or not) the characteristics of real traces as

observed in the dataset, reproducing the eventual shortcomings of the data. Sampling improvements

include the application of detection techniques (such as [Secan et al 2011]) in order to remove

abnormal events from the raw data before using the modeling techniques discusses in this chapter.

Although they could potentially improve the data, they are not essential at this point, thus, we

leave this approach for further work.
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transmission trial can be seen as a Bernoulli random variable, whose value is 1 in

case of success and 0 otherwise and whose expected value is p. Assuming each

trial is independent and the parameter p is homogeneous for each P and F , we

may estimate it by the empirical proportion of successes over all trials. Since each

tuple in D accounts for a successful neighbor-to-neighbor transmission, |D| is the

number of successful trials for all di�usion cascades. The total number of trials, in

turn, is given by the sum of the degrees of all nodes involved in the spreading of

each �le. Hence, we obtain the following estimate, with a 95% con�dence interval

p̂± 10−6:

p̂ = |D| /
∑
F∈F

∑
P∈PF

d(P ) = 1.063× 10−3

Since the simple SIR model depends on a single parameter, namely the spread-

ing probability p, we have fully characterized it with the preceding estimation.

3.1.1 Calibration

In this Section we use the reconstructed underlying network and the initial

condition information (the list of initial providers IF computed for each �le F ),

obtained in the previous chapter, and the SIR model with calibrated spreading

parameter p̂, as described above, to simulate �le spread di�usion. For each F ,

we begin with the initial providers in an infected state and the other nodes in a

susceptible state. At each step, infected nodes infect each of their neighbors with

probability p̂, becoming non-interacting afterwards. The epidemic continues as

long as there are interacting infected nodes.

The �rst observation concerning the model simulation is that the observed

time (measured in seconds) has no direct relation with the simulation time (number

of steps). Furthermore, our dataset corresponds to an observation in a bounded

window of time of eight hours, so that we have no reason to suppose that the

�le spreading cascades we observe correspond to the whole spreading cascade

of a �le. In other words, if we had measured a longer time window we would

likely observe bigger cascades (in terms of size and depth) for the same �les –
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due to, among other reasons, new users who could eventually request the same

�les. This is also true for our SIR model: we observe increasingly bigger cascades

as simulation time increases. In fact, performing unconstrained simulations we

have obtained a distribution of signi�cantly bigger cascades than the ones we have

observed in the real trace. Thus, in order to perform a suitable comparison with the

observed cascades, we have decided to hold one property �xed and compare the

other properties. More precisely, for each �le we generate a simulated cascade with

the same size (resp. depth) as the corresponding observed cascade and compare

the depth (resp. size) and number of links. In practice, for each �le we simulate the

SIR epidemic as described earlier and halt it when it reaches the size (resp. depth)

of the corresponding observed cascade. We have performed 801 280 �le spreading

simulations in total (one for each �le in F ).

3.1.2 Results

In Figure 3.1a we plotted the complementary cumulative distribution of the size

of cascades with comparable depth. We observe a divergence of the cascade size

from the observed cascades: simulated cascades are typically much bigger in size

for a given depth compared to real cascades. The range of values in both categories

is also striking: the biggest real cascade is at least two orders of magnitude smaller

than the biggest simulated ones. In Figure 3.1c we plot the complementary cumu-

lative distribution of the depth of cascades with �xed size. Real cascades feature

a much higher depth compared to simulations, holding cascade size constant. In

particular there is a cuto� on the cascade depth for the simulations: we do not

observe any simulated cascade with depth bigger than 11. As for the number of

links, we have two interesting situations. If we �x the depth (Figure 3.1b) the

number of links distribution resembles closely the size distribution (Figure 3.1a).

This is not completely surprising, since the two quantities are related. In this case

we observe a larger number of links for all simulations compared to the number of

links in the real cascades since the simulated cascades themselves are bigger. If, in

contrast, we �x the cascade size to �t the observed cascades size (Figure 3.1d), we

observe a typically smaller number of links. Combining these observations on both

plots we conclude that real spreading cascades are denser than simulated ones, a

clear qualitative feature not captured by the simple SIR model. Finally we note
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(a) Size of cascades with �xed depth.
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(b) Number of links of cascades with �xed
depth.
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(c) Depth of cascades with �xed size.
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(d)Number of links of cascades with �xed size.

Figure 3.1 – Complementary cumulative distribution of key cascade properties for real and
simple SIR-generated cascades.

that most cascades are trivial, featuring depth equal to one and correspondingly

small size.

To sum up, we have compared simple topological properties of real spreading

cascades and simulated cascades from a calibrated SIR model, with comparable

depth and size. We have observed that simulated cascades are relatively “wider”

whereas real cascades are relatively “elongated”, that is, real cascades have a smaller

size per depth ratio. Moreover, real cascades are typically denser than simulated

ones.
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3.2 Heterogeneous SIR models

In the previous section we have examined the adequacy of the simple SIR

model to generate realistic �le spreading cascades. Given the generality and sim-

plicity of the homogeneous model, it is not entirely surprising that it does not

capture key properties of real spreading cascades in our data. In order to fairly

assess the relevance of the SIR dynamic in our context, in this Section we con-

sider natural extensions of the SIR model considered previously, which take into

account heterogeneous aspects found in the observed data. More precisely, we

perform a complementary analysis, focusing on the interest graph and examining

two heterogeneous versions of the SIR model, characterized by a distribution of

spreading probabilities, instead of a single homogeneous parameter. These models

take into account the �le popularity and peer behavior heterogeneity and are, thus,

presumably better equipped to mimic real spreading cascades.

3.2.1 File popularity

A �rst re�nement of the simple SIR model consists in introducing di�erent

spreading probabilities according to the �le being spread. The rationale in this case

is to account for di�erent levels of popularity depending on the �le. Exogenous

reasons – such as a movie release or the death of an artist – can change the supply

and demand of a given �le and consequently alter its spreading probability. If we

know the spreading probabilities for each �le, i.e., {p(F ) : F ∈ F}, the knowledge

of the actual reasons that explain the heterogeneity in �le popularity are irrelevant

to the characterization of this model. An estimate of these probabilities, in turn,

can be obtained from the trace D if we suppose it was generated by a process

following this extended SIR model. Indeed, since each �le spreading is independent

of the others, it is possible to estimate p(F ) for each F separately, with the same

method used to derive the homogeneous parameter. Restricting the calculations

to the spreading cascade of F , p̂(F ) will be given by the empirical proportion of

successful transmissions of F over all possible transmissions of F :

p̂(F ) = |{(·, ·, ·, F ) ∈ D}| /
∑
P∈PF

d(P )
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In Figure 3.2a we plot the distribution of the heterogeneous spreading parame-

ters depending on the �les. The values of p̂ are concentrated on the range 10−5 to

10−2, indicating that there is a considerable fraction of cascades with a signi�cantly

di�erent spreading regime (bigger than one order of magnitude). This distribution

characterizes the extended SIR model we use in the following simulations.

3.2.2 Peer behavior

A second possible re�nement is motivated by the fact that peers might have

intrinsically distinct levels of “generosity” regarding �le sharing. Under this hy-

pothesis we extend the standard SIR model assigning an heterogeneous spreading

probability to each peer, regardless of which �le it is sharing. Thus, we do not need

any other information but the spreading probability distribution to characterize

the model. In this context altruistic peers, who typically spread �les to a large

proportion of their neighbors, would feature a bigger spreading probability com-

pared to the homogeneous spreading probability corresponding to the di�usion

aggregates of all peers. By the same token, the extreme case of free-riders would

have their spreading probability assigned to zero. Again we can study transmis-

sions as outcomes of Bernoulli trials to estimate the spreading probabilities. Let

FP = {F ∈ F : (P, F ) ∈ A} be the �les carried by the peer P ; for each such �le

the number of transmission trials P could perform corresponds to its degree in

the interest graph, namely d(P ). Hence, to obtain p̂(P ) for each peer P we divide

the number of successful transmissions of P to other peers (of any �le carried by

P ) over the total number of potential trials:

p̂(P ) =
|{(·, P, ·, ·) ∈ D}|
|FP | × d(P )

We have plotted the distribution of the positive spreading probabilities esti-

mates in this case (Figure 3.2b). They account for small fraction of all the peers,

since the only peers who have a positive spreading probability are those who

provided a �le at least once – namely 4.33% (cf. observations made in Chapter 2).

Conversely, a large fraction of the peers do not share the �le in this model. We

observe a marked range of values, which is signi�cantly greater than the one
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computed for the homogeneous SIR.

(a) Depending on the �les (b) Depending on the peers

Figure 3.2 – Heterogeneous spreading parameter distributions

3.2.3 Results

Our aim is to generate simulated cascades following both extensions of the

SIR model presented – with heterogeneous spreading probability depending on

the �les and on the peers – and compare their properties with simulated cascades

of the simple SIR model and the real observed cascades. In this sense, we apply

the same methodology as in previous simulations: we �x the depth (resp. size)

for the simulated cascades and examine the other two properties – the idea is to

compare similar spreading cascades in terms of the chosen property. As discussed

previously, the great majority of the cascades is simple, with depth equal to one and

a small size. Hence the simulated cascades corresponding to the simple observed

cascades will likely correspond in terms of depth, size and number of links. For

this reason, we have decided in this Section to focus on the spreading cascades

with depth greater than one.

The simulation results are plotted in Figure 3.3: we have plotted the comple-

mentary cumulative distributions of the spreading cascade depth, size and number

of links. Imposing a constraint on the depth for the simulated cascades and com-

paring their size (Figure 3.3a) we observe the contrast between the simulated and

the real observed cascades with the same depth: the former have a typically bigger
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size compared to the latter. What is remarkable, however, is the agreement among

all the simulated cascade distributions – curves superposed in Figure 3.3a. Next, if

we �x the size for the simulated cascades and examine their depth (Figure 3.3c), we

face the same qualitative similarity among simulated curves. Indeed, the curves

corresponding to the heterogeneous SIR models also feature a cuto� in depth,

failing to reproduce the scale-free curve representing the depth of the observed

real cascades. Finally, the cascade links distribution plotted in Figure 3.3b and

Figure 3.3d con�rms the pattern observed previously, namely that the observed

spreading cascades are typically denser than corresponding simulated cascades.

(a) Size of cascades with �xed depth. Curves
corresponding to the simulations are super-
posed.

(b) Number of links of cascades with �xed
depth. Curves corresponding to the simula-
tions are superposed.

(c) Depth of cascades with �xed size. (d) Number of links of cascades with �xed size.
Curves corresponding to the simulations are
superposed.

Figure 3.3 – Simulation of �le spreading on the interest graph with heterogeneous SIR
extensions: complementary cumulative distribution of cascade properties.
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In spite of the improvements in the SIR model, introducing an heterogeneous

spreading parameter to account for di�erent pro�le of �les (respectively peers),

simulations indicate that this re�nement does not change qualitatively the basic

properties of simulated spreading cascades. Indeed we observe a surprising simi-

larity between the three compared SIR models, notwithstanding the particularities

of each model.

3.3 SIR model with a�nity measure

In the previous Section we have examined SIR model extensions that take into

account heterogeneous aspects of peers and �les with the goal of generating more

realistic spreading cascades. Another approach is to keep the simple SIR model

and enrich the social network inference. In this Section we address this question,

proposing a way to re�ne the interest graph taking into account the a�nity among

peers. The rationale is that peers are more likely to interact with other peers with

whom they have greater a�nity. In the following we describe a method to quantify

this relation.

3.3.1 Weighted interest graph

In concrete terms, our a�nity score between two peers will be de�ned by the

number of common �les peers shared or provided. Indeed, instead of approximating

the interest graph by the simple projection of B on P , we consider a richer inferred

interest graph G = (P , E ,W), given by the weighted projection of B on P such

that

E = {(P, P ′) ∈ P × P : ∃F ∈ F , (P, F ) ∈ A ∧ (P ′, F ) ∈ A}

W(P, P ′) = |{F ∈ F : (P, F ) ∈ A ∧ (P ′, F ) ∈ A}|

In other words, peers belonging to the neighborhood of a common �le in B
are connected in G. If a peer P provides a �le F (corresponding to a music album

for example) to another peer P ′, then there is a link between them in the interest

graph since both are interested in the same content, namely F . Furthermore, each
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edge (P, P ′) ∈ E has an integer weight given by the number of common �les

they have manifested interest in. As an example, consider the trace sample from

Chapter 2: the corresponding weighted interest graph, reproduced in Figure 3.4,

will take into account the “multiple” colored edges connecting two nodes in the Fig-

ure 2.8a, reproduced below. Thus, the edges (1, 4), (1, 5), (1, 9), (2, 3), (4, 9), (7, 9)

have weight 2 and the other edges have weight 1.
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Figure 3.4 – Weighted interest graph reconstructed from the simple trace given in Table 2.1.

In Figure 3.5a we have plotted the distribution of weight values in the interest

graph: it is heterogeneous, with the vast majority of edges featuring small weights.

Finally, note that the weight scheme we have introduced is by no means the only

way to assign an a�nity index to each edge of the interest graph. One could assign

a greater a�nity to two peers who are both interested in rarer �les than two peers

interested to common �les for instance; another possibility is the Jaccard index of

similarity. That said, our choice is quite natural and is motivated by the hypothesis

that peers will likely spread �les to the neighbors with whom they have greater

a�nity, as we explain below.

3.3.2 A�nity measure and spreading dynamic

The di�usion models we have used so far require adaptation to take into ac-

count the enhanced network topology. We keep the main hypotheses of the SIR

model, that is, that each individual is in one of the following states: susceptible,
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graph: heterogeneous (heavy-tailed)
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(b) Infection probability estimation, reveal-
ing an increasing spreading probability with
weight

Figure 3.5 – The interest graph connects peers who share common interests and attributes a
weight between this connection proportionally to the the overlap among their interests. Some
peers have several common interests with others, but most peers have few shared interests.
Contagion spreads best among peers with stronger connection.

infected or non-interacting (sometimes denoted removed). Susceptible nodes do not

possess the �le and may receive it from an infected node, thus becoming infected.

Infected nodes, in turn, try to spread the �le to each of its neighbors, independently,

and become promptly non-interacting thereafter. Each infection attempt from

an infected node P to the node P ′ is successful with probability σ(w) ∈ [0, 1],

depending on the weight w of the edge connecting P and P ′.

It is reasonable to assume that a peer P is more successful in spreading a �le

to the neighbors with whom he or she has a greater common interest. In terms of

the spreading probability σ, this assumption translates itself as supposing σ(w) is

increasing with w. Indeed, the weight connecting P and its neighbors is a measure

of how similar are their interests. Hence the more similar two peers are in terms

of interest, the greater the weight of the edge connecting them and, in turn, the

greater the spreading probability. To verify this hypothesis we have estimated

the value of σ(w) for each value of w, adapting estimation methods used in Sec-

tions 3.1, 3.2. Each observed spreading cascade of a �le F in the trace provides

a set of estimated values {σ̂F (w)}: as expected, we have found that the median

values of σ̂ are increasing with w up to w = 25 (with the exception of two values),

after which they essentially reach a plateau at σ̂(w) = 0.5. In Figure 3.5 (right) we
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have plotted the estimator values for all weights from 1 to 25 in terms of box plots.

Following the approach in [Onnela et al., 2007], we have used a linear func-

tion to model the spreading probability on the weighted graph, namely σ1(w) =

a1w + b1, with a1 = 3.07 × 10−3 and b1 = 1.54 × 10−3 obtained with a least

squares calibration. The number of edges with small weights is much greater than

the number of edges with big weights in this graph – cf. Figure 3.5a. Indeed we

observe a greater number of transmissions between peers connected by edges with

smaller weight. Hence, the quality of the estimators is greater for small values of

w and we have taken into account primarily these values in this model. We have

also examined an alternative model for σ, which captures qualitatively the stagna-

tion of σ for large values of w. In this case we have σ2(w) = a2 log(w) + b2 with

a2 = 14.10×10−3 and b2 = 0.58×10−3 obtained with the same calibration method.

3.3.3 Results

Equipped with the reconstructed social network of peers (the weighted interest

graph) and models for the di�usion of �les (described above) we have simulated

the spreading of all the �les and compared the corresponding spreading cascades

with the real, observed, spreading cascades. Simulated traces corresponding to the

spreading of each �le F ∈ F contains the same number of transfers as the real

observed trace of F .

In Figure 3.6 we have plotted the complementary cumulative distributions of

cascade properties from real cascades, compared to the simulated cascades using

the di�usion models described above. The �rst general remark is that simulated

cascades generated by both models are quite similar in terms of these metrics. In-

deed, the curves of both simulations are superposed for the three plots. Compared

to the distribution of real cascades, the sharpest contrast is in terms of depth: the

distribution for simulated cascades features only small values of depth, whereas

the depth distribution for real cascades is remarkably scale-free. We also �nd a

discrepancy between simulated and real cascades in terms of size and number of

links: in the former the gap is sharper and in the latter both distributions follow
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Figure 3.6 – Spreading cascades pro�le in terms of depth, size and number of links respectively.
Both models yielded the same cascades pro�le (simulation curves superposed), contrasting
with real spreading cascades in terms of depth.

globally the same trend. Considered together the curves make clear that these

models face a challenge to capture key topological properties simultaneously. In-

deed, real cascades have a shape closer to chain-email cascades [Liben-Nowell

and Kleinberg, 2008], in the sense that they are relatively elongated compared to

simulated cascades obtained with these contagion models.

3.4 Summary

We have assessed the pertinence of SIR model and extensions, using a maxi-

mum of likelihood estimation framework. Assuming the observed di�usion was
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a product of an epidemic contagion process, we have calibrated the models and

generated simulated cascades which we compared to real ones. We concluded that

simulated �le di�usions do not capture key qualitative properties of the observed

spreading cascades.

Simulated cascades from extensions of the SIR model (which take into account

the heterogeneity in �le popularity and peer behavior) show similar properties

as the simple homogeneous SIR model. In addition to these extensions, we have

enriched the reconstruction of the interest graph, introducing a measure of a�nity

among peers. Again, simulations reveal another unexpected point: despite the

enhanced social network topology, the model simulations did not reproduce quali-

tative features of real spreading cascades.

The reason behind these results may be that the SIR model is too simple to

account for the di�usion mechanism. Although this is a likely possibility, it is

remarkable that taking into account the above mentioned heterogeneities did not

improve the model signi�cantly. This suggests that the key component to improve

the model is other. As we shall see in the next chapter, integrating time patters

into this process is a hopeful strategy to improve models.
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I
n the previous chapter we have developed a model calibration and evaluation

framework and began assessing the simple SIR model. Once we concluded

it was incapable of reproducing key spreading cascade properties, we examined

several extensions of the model which explored several properties found in the

data, both in terms of the di�usion process (taking into account �le popularity

and peer behavior) and in terms of the underlying network (weighted interest

graph). In particular, in the latter extension peers who were not much active in

the network, exchanging only a few �les, had a small a�nity score with their

neighbors (since their a�nity score is limited by the number of �les). Thus, �les

spread more di�cultly to these peers, relative to more active/present peers in the

system. As the introduction of the a�nity measure did not led to any signi�cant

qualitative improvement, we concluded it failed to capture heterogeneity of node

presence in the network properly.

With the goal to take into account the node presence directly, we consider the

dynamic interest graph of peers, which is obtained from the structure of the original
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interest graph in addition to the intervals of presence of each node. As mentioned

in Chapter 2 we do not dispose of the peer connection data in our dataset. Thus

we begin this chapter describing a method to infer the connection instants for

each peer using their activity pattern (which contains temporal data, in terms

of timestamps). Next, in order to study di�usion on the dynamic interest graph,

we need to departure from the simple SIR dynamic and examine models capable

of taking into account this temporal information in the spreading mechanism.

More precisely, since the interval connections are given in terms of seconds, we

need a di�usion model whose evolution is given in a compatible time scale. We

motivate the choice of such a model and corresponding adaptations it entails in our

framework. Similarly to the previous chapter, we perform simulations to assess the

capability of this model (in two variations) to reproduce realistic cascade properties.

4.1 Peer connection data

Although we do not dispose of connection events for each peer in our dataset,

we know the activity pattern of each peer (in time), as our dataset consists of a

collection of �le exchange records among peer with timestamps. We summarize

peers’ behavior in the �le sharing system in Figure 4.1: since we only record trans-

mission events, each observed peer has connected at least once into the system

and remained a certain time on-line during our measurements.

Figure 4.1 – Scheme of peer activity featuring all possible events.

Intuitively, given the activity pro�le, such as the examples in Figure 4.2, we

would like to place connection and disconnection events in the timeline. In order

to do so in a systematic way we �rst have to make a few assumptions on peer

behavior concerning connection events. A simple model is to suppose that con-

nection and disconnection times occur after exponential times and that the time
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elapsed between two �le request events is relatively short when users are on-line

and longer if users went o�-line. In this case, given the activity pattern of a node,

we can infer if the time elapsed between two �le requests are of long type or short

type using an expectation–maximization algorithm, as well as the exponential

rates [Jewell, 1982]. If we dispose of this information and we know that peers likely

wait a “typical” amount of time from the moment they connect into the system and

the �rst �le request we can obtain a likely connection instant. Analyzing a similar

dataset of P2P request collected in our lab we have determined that the typical time

in this context was 5 minutes. In Figure 4.2 we illustrate the method, showing the

inferred connection events for the peers featured in Figure 2.1. With this procedure

we estimated the distributions for the login and logout rates: Figure 4.3 shows the

complementary cumulative distributions for the estimated peer login and logout

rates and observe they are heavy tailed.

??????? ???? ??? ??? ???? ???????? ???????

???
???
???
???
???
??

???? ??

Figure 4.2 – Activity pro�le of six clients with inferred connection events: green circles and
red crosses represent logins and logout respectively.

4.2 Integrating time patterns

Once the connection data for the peers has been obtained, in the following

we use the data to improve the interest graph of peers, de�ning the dynamic
interest graph, where peers interaction is only taken into account if peers are

simultaneously present in the system. This new interest graph also calls for new

spreading models, which are able to take into account the connection data, thus we

examine an adapted version of the network SI model, in two variations: one which

considers a homogeneous peer spreading behavior and another which features an

individual spreading behavior for each peer.
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Figure 4.3 – The peer login and logout rate complementary cumulative distributions are also
heterogeneous and feature a cuto�.

4.2.1 Dynamic interest graph

The interest graph is a comprehensive synthesis of peers’ interest relations

revealed in the observed time window. These relations are key to di�usion, since

the spread of �les occurs on the interest graph, as pointed out previously. How-

ever, even if the spread of �les between neighbors in the interest graph is likely,

the actual transfer of �les may not occur concretely because they may never be

simultaneously connected to the P2P system or have a small co-presence time – i.e.,

the amount of time on-line in the presence of each other in the system is small.

Hence, in order to make simulations more realistic, in the sense of reproducing

observed �le spreading cascades, we used temporal information to enhance the

social network reconstruction.

A strategy to use temporal information, integrating the connection data esti-

mated in the previous section is to reconstruct a dynamic interest graph. In this

graph, two peers will be connected at time t > 0 if they share a common interest

(as in the interest graph) and if they are both online at time t. More formally, let

Pt be the set of nodes on-line at time t > 0 and let the dynamic interest graph be
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de�ned as Gt = (Pt, Et), with

Et = {(P, P ′) ∈ Pt × Pt : ∃F ∈ F , (P, F ) ∈ A and (P ′, F ) ∈ A}.

Intuitively, the dynamic interest graph is built similarly to the original interest

graph, but evolves with the addition/suppression of connecting/disconnecting

nodes and the respective links between these nodes and their neighbors. The

dynamic interest graph is a subgraph of the interest graph G = (P , E) de�ned

previously, in the sense that for all t > 0, Pt ⊂ P and Et ⊂ E . In the following,

we examine the dynamic interest graph as the underlying social network on which

we perform �le spreading simulations.

4.2.2 Spreading dynamic with inter-contagion time

In the previous chapter we have modeled the spread of �les using a SIR model

in which nodes are in one of the following states: susceptible, infected and removed.

A node in the latter state is permanently inactive and cannot infect other neighbors.

In this chapter, where we explore and take into account peers’ temporal patterns,

the inactive periods correspond to the o�-line periods, encoded in the dynamic

graph. Thus, to simulate the �le spreading, we use the SI model, a contagion model

similar to the SIR model. In this model, each individual is either susceptible or

infected. Susceptible nodes do not possess the �le and may receive it from an

infected node, thus becoming infected. Infected nodes, in turn, try to spread the

�le to each of their neighbors in the network, one at a time.

In this model we also introduce a new feature: the time between two infections

takes a random number of seconds following an exponential distribution, which

we refer to as the inter-contagion time (ICT). Node latency given by exponential

time is a common assumption and was proposed previously in the context of P2P

�le sharing systems [Leibnitz et al., 2006]. The ICT is characterized by a rate or,

alternatively, by the mean (expected) ICT, since in the case of exponential random

variables the mean time is the inverse of the rate. Moreover, if P possesses the �le

F , the number of peers who received the �le F from P (after P obtained it) is a
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Poisson process characterized by the inter-contagion time rate (or the mean ICT).

We will examine SI models with homogeneous and heterogeneous inter-contagion

time. In other words, in the �rst case we suppose all nodes have the same spreading

behavior (global ICT rate) and in the second, an individual one (a di�erent ICT

rate for each node).

The introduction of contagion model featuring inter-contagion times allows

us to adjust the simulation in terms of the chronological time (in seconds), as we

observe in the di�usion trace. This represents a key contrast to the spreading

models from the previous chapter, whose evolution happened in a simulation

intrinsic time (given by the number of steps in the algorithm). This is precisely

the reason why we had to hold one cascade property constant and analyze the

remaining properties in the previous chapter: in this way we would have a com-

parable set of cascades with respect to a property. In contrast, the time bound of

the simulations using the model presented above is given in seconds, so there is a

more straight-forward and natural way to obtain a comparable set of simulated

cascades: we impose the same time scale observed in the di�usion trace to the

simulated cascades. That is, we simply simulate the di�usion of the cascades up to

the time T (last time observed in the trace) and compare the three key properties

of the simulated cascades to the corresponding real ones.

With the methodology presented above, we proceed to the model calibration,

using the temporal data in our trace. The estimation process takes into account

the number of �les provided by each node and how long the node was on-line.

Therefore, it yields di�erent estimates for the average inter-contagion time in the

static and dynamic settings – i.e., if we suppose nodes were continuously on-line

during the whole period or not. Considering the homogeneous SI model �rst, we

estimate average inter-contagion times of 10 064 seconds (2h48min) in the static

setting and 4 926 seconds (1h22min) in the dynamic setting.

Next, considering the heterogeneous SI model, we also have di�erent average

inter-contagion time estimates for di�erent settings: similarly to the homogeneous

model, individual estimates are also generally greater in the static setting. Indeed,

nodes seem less active if we suppose they were continuously on-line in the whole
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observation period (since the number of transfers remains the same). An important

di�erence in this model, compared to the homogeneous one, is the following: indi-

vidual average inter-contagion times imply that observed free riders (clients who

do not provide �les) have null ICT rate estimates. Hence they will also behave as

free riders in simulations of this model. The estimated complementary cumulative

distributions in both settings (static and dynamic) are plotted in Figure 4.4. As

noted in Chapter 2, more than 95% of the peers in the system are free riders, and

thus, are not represented in the plot.

Figure 4.4 – Complementary cumulative distributions of individual average inter-contagion
time estimates for nodes in the static and dynamic interest graphs. Free riders (> 95%) have
null inter-contagion time rate and are not shown.

4.3 File spreading simulation

We have simulated the SI model with homogeneous and heterogeneous spread-

ing behavior as outlined above on the dynamic interest graphs for each �le present

in the trace. The pro�les of real and simulated cascades are summarized in Fig-

ure 4.5: we have plotted the complementary cumulative distributions of cascades’

size, number of links and depth. For each cascade property, we plot the same

distribution in lin-log and log-log (inset) scales, which highlight respectively

smaller/short cascades (most cascades) and bigger/deeper cascades (rare cascades).
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Figure 4.5 – Spreading cascades pro�le in terms of size, number of links and depth, re-
spectively. Plots feature the complementary cumulative distribution of these properties in
lin-log and log-log (inset) scales. Simulations on the dynamic graph remain closer to real
cascades (trace), with the homogeneous model reproducing well real cascades’ size and the
heterogeneous one, their number of links; no model was able to reproduce the observed depth
distribution.

4.3.1 Result

In terms of the variations examined, the dichotomy static/dynamic graph

changes has an overall impact, but a�ects particularly the distribution of trivial

cascades. Compared to simulations on the static graph, simulations on the dynamic

graph yielded a bigger proportion of small cascades which is what we observe in

out measurements. The dichotomy homogeneous/heterogeneous SI model impacts

mostly the properties’ distribution tail, particularly in terms of size and number of

links. All other things equal, in our setting, the homogeneous SI model yielded

simulations with smaller proportion of large cascades, which is closer to the ob-

served cascades in terms of size, but more distant in terms of number of nodes. In
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terms of depth distribution we note that none of the proposed models was able to

reproduce the scale-free depth distribution featured by the real cascades: simulated

cascades exhibit, in contrast to real ones, a sharp decrease in the proportion of

cascades with depth greater than 10, revealing a cuto�.

In sum, in terms of size and number of links, we �nd encouraging results: both

homogeneous and heterogeneous models perform relatively well in the dynamic

setting, in the sense that simulations on the dynamic graph feature a proportion

of small cascades similar to the real ones (most cascades). In terms of larger (and

infrequent) cascades, the homogeneous model reproduces well the size distribution

of real cascades; in terms of number of links, the heterogeneous model is superior.

Although this model cannot generate arti�cial cascades similar to real ones in

terms of all key properties, we have shown the importance of taking into account

the temporal data in contagion models which aim to generate realistic cascades.

4.3.2 Impact of on-line presence

With respect to the previous approach, in Chapter 3 we have changed both

the underlying network and the spreading dynamic, since it had to be compatible

with the dynamic graph in terms of time scale. The converse, however, is not

true: the new spreading dynamic we have used can be simulated in static graphs,

particularly the original interest graph. Hence, we decided to simulate it also in

this graph to isolate the impact of the new spreading dynamic from the the impact

of the improved underlying graph. We denote in this chapter the original interest

graph static, in contrast to the dynamic one. The results are quite di�erent as

we observe in Figure 4.5: comparing simulated cascade pro�les on the static and

dynamic interest graphs we note that cascades are generally smaller and feature a

smaller number of links in the dynamic graph. As expected there are no properties

for which the simulations on the least realistic graph were superior, though we

insist that no model was able to reproduce the cascade depth distribution.

This can be due to the fact that this graph is static or that it simply ignores

the fact that many connections could not the used in the real-world since peers

were never simultaneously on-line. In our case, these “arti�cial” links which do
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not respect the co-presence in the graph amount to 29% of the links in the static

interest graph. So, in order to evaluate their impact, we have also simulated our

models on the static interest graph without these links (not shown) and found that

the impact was minor: simulated cascades in this new static graph featured the

same pro�le of simulated cascades on the original static interest graph. Thus, we

conclude that the di�erence in cascade pro�les simulated on static and dynamic

graphs is primarily due to the reduction of the co-presence time (and not simply

the co-presence) among neighbors in the dynamic graph and potential causality

e�ects. Indeed, in the static interest graph the co-presence times correspond to

the whole observation period. This cascade pro�le di�erence is not trivial given

the possibility that the co-presence time reduction could have been compensated

(or overcompensated) by the fact that nodes in the dynamic graph are more active

than nodes in the static graph, as discussed previously.

4.4 Summary

In this chapter we have explored the peer temporal patterns and their impli-

cations for epidemic contagion models such as those described in the previous

chapter. First, given the activity pro�le, we have inferred the connection events of

each user with a maximum of likelihood approach. Even though we were working

with fairly simple starting assumption, namely that the connection intervals and

the intervals between two requests followed an exponential distribution, with a

rate per peer, we found that the rate distribution is heavy-tailed. This is due, in

part, to the cuto� in the measurement in the end of our time window.

Secondly, we have adapted the interest graph to incorporate the connection

data, thus constructing a dynamic interest graph. In addition to re�ning the un-

derlying network, we have also improved the di�usion process, integrating the

notion of inter-event times. In contrast to the models from previous chapter, this

model add a latency in the information spread for each node. We have estimated

the parameters for this model using the static and the dynamic interest graphs,

supposing that peers have an homogeneous and heterogeneous behavior regarding

this latency time. Simulation with these variants revealed that the most important
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variation was the improvement in the interest graph. The di�erence between

the static and dynamic interest graphs was key to reproduce realistic small cas-

cades. Bigger cascades remain challenging to reproduce, specially in terms of depth.

In sum, the results of this chapter emphasize the value of integrating time

patterns into the models, in order to generate realistic spreading cascades. In

particular, we have highlighted the positive impact of considering dynamic graphs

which integrate node connection data.
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H
aving analyzed the ability of contagion spreading models to reproduce key

features of real �le spreading cascades in the previous chapters, we turn to

the question of the sensibility of these models to the underlying network structure.

As we have mentioned in Chapter 1, there are a number of results in relating

topological structures of random graphs and asymptotic results, i.e., when the

epidemic is allowed to evolve with no duration constraints. In particular, studies

have highlighted the importance of node degree distribution in random graphs to

predict the probability of the epidemic extinction in the case of SIR models [Pastor-

Satorras and Vespignani, 2001, Newman, 2003]. Similar results were also given

in terms of graph spectral analysis [Wang et al., 2003, Prakash et al., 2012]. The

analysis of asymptotic behavior of contagion models on random graphs featuring

structural properties similar to real-world graphs is is an active research camp,

particularly sparse random graphs with local clustering [Coupechoux and Lelarge,

2012]. In spite of the great interest and important results obtained in this area, the

analysis of “out of the equilibrium” spreading, that is, in non-asymptotic regimes

remains remarkably scarce – which is in part due to the challenges in devising
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theoretical results without asymptotic analysis tools.

In this chapter we analyze the impact of interest graphs’ key structural proper-

ties in terms of spreading cascades generated by the previous models. In particular

we consider our baseline model, the simple SIR model and the best model examined,

the SI model with homogeneous/heterogeneous inter-contag~ion time.

5.1 Methodology

As we have seen in Chapter 2, the interest graph was constructed from the

measurements of real peer-activity and features key properties of complex net-

works, namely small diameter, heavy-tailed degree distribution and sparsity/local

clustering. A priori, each of these properties (and perhaps other non-identi�ed

properties) may play a key role in contagion spreading. Moreover, it is possible

that one property may have a much greater impact than another, independently

of the other properties mentioned. For this reason these properties have to be

analyzed separately. Strictly speaking this is not possible, since these properties

are correlated. However, in the following we present a methodology to analyze

these properties individually using random graphs.

We have considered the spreading of �les in a sequence of random networks

derived from the interest graph, with increasing topological complexity (Figure 5.1).

More precisely we begin considering an Erdös-Rényi (ER) random graph with the

same density and size as our interest graph, the simplest random graph in our

sequence. Then we have chosen a random graph with the same density and degree

distribution using the Con�guration Model (CM) approach [Molloy and Reed,

1995, Newman, 2003]. Next we have generated a random bipartite graph, with the

same density and degree distribution as our original bipartite graph B of peers and

�les [Guillaume and Latapy, 2004]. Compared to the interest graph, the projection

of this random bipartite graph (RB) has similar density, degree distribution and

clustering coe�cient. In sum, for each new element of this sequence of (uniformly

chosen) random graphs we introduce a new constraint to make it more realistic –
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in the sense that its topological properties will be closer to the interest graph.

Erdős
Rényi

ConÞg.
Model

Random
Bipartite

local
clustering+

Interest
Graph

degree
distribution+size and

density+

Figure 5.1 – Increasingly realistic random graphs derived from the data, which replicate
properties found in the interest interest graph. The random graphs were generated uniformly.

In section 5.3, in which we simulate the best model investigated in the previous

chapters, we examine an extra property in this section, in addition to the network

structure variations provided by the sequence of random graphs: the degree distri-

bution of the initial providers (sometimes also referred as epidemic “seeds”). As we

have seen in Chapter 2, the observed degree distribution in the trace is di�erent

from the overall degree distribution of all nodes. Indeed, providers are typically

more connected than regular nodes cf. Figure 5.2.

Figure 5.2 – Degree distributions on the interest graph plotted in lin-log scale. Superposed
curves: all peers and clients, providers and initial providers

Hence, to assess the impact of the initial provider degree distribution we per-

form additional simulations on each random graph, holding this property constant.

In the case of the ER graph, this extra simulation is not pertinent, since in these
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graphs not even the node degree distribution is conserved. In the case of the CM

graph, it is possible to simulate the model using precisely the same distribution

observed in the trace. Finally, in the case of the RB graph, although the node degree

distribution is similar to the interest graph’s, one cannot guarantee a perfect match

for each node. For this reason we ranked the nodes in the interest graph and in

the RB graph in terms of their degree distribution and matched these nodes. The

result is a similar and consistent degree distribution, suitable for to the simulation

of all cascades.

5.2 Simple SIR model on interest graph

As we pointed out in the beginning of this chapter, we are interested in in-

vestigating the impact of the key topological properties for contagion models in

non-asymptotic regimes. Recall that in Chapter 3, we saw that the simple SIR

model evolves in discrete simulation steps which have no direct relation with the

the real time (measured in seconds) of real traces. Out of simplicity, we wish to

compare the sets of spreading cascades similar to the real, observed cascades, so we

will follow the strategy presented in Chapter 3: we identify the properties of each

the observed cascades and generate simulated cascades with similar properties.

In particular, we have decided to hold one property �xed and compare the other

properties. More precisely, for each �le we generate a simulated cascade with the

same size (resp. depth) as the corresponding observed cascade and compare the

depth (resp. size) and number of links. In practice, for each �le we simulate the

SIR epidemic as described earlier and halt it when it reaches the size (resp. depth)

of the corresponding observed cascade.

We have generated populations of simulated cascades for each underlying net-

work and constraint (on depth and size). We have performed 801 280 �le spreading

simulations (one for each �le in F ) for each network and have selected every

simulated �le spreading cascade which attained the depth (resp. size) of the real

spreading cascade for the same �le – and have rejected the others for purpose

of comparison. With this procedure, each underlying network yields a di�erent

population of �le spreading cascades, since the rejected cascades may be di�erent
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in each case. However 93.80% of the �les have generated simulated cascades with

the same depth as the corresponding real cascades, for all networks. Similarly,

85.64% of the �les have generated simulated cascades with the same size as the

corresponding real cascades, for all networks – except the ER network. Indeed,

only 21.76% of the �les have generated the contemplated size in the ER graph.

Furthermore the properties of these simulated cascades on the ER graph deviated

signi�cantly from the properties of the cascades on the other graphs. Hence, in

the following analysis we do not include the simulations for the ER graph. Rather,

we focus on the properties of the �les with comparable spreading cascade depth

(resp. size) on all networks but ER.

In Figure 5.3a we plotted the complementary cumulative distribution of the size

of cascades with comparable depth. We observe a divergence of the cascade size

from the observed cascades: simulated cascades are typically much bigger in size

for a given depth compared to real cascades. The range of values in both categories

is also striking: the biggest real cascade is at least two orders of magnitude smaller

than the biggest simulated ones. Among the simulated cascades, there is a remark-

able matching in size values for the simulation on the CM and the interest graph

(curves are superposed). In Figure 5.3c we plot the complementary cumulative

distribution of the depth of cascades with �xed size. Real cascades feature a much

higher depth compared to simulations, holding cascade size constant. In particular

there is a cuto� on the cascade depth for the simulations: we do not observe any

cascade depth bigger than 11 in the simulations. As for the number of links, we

have two interesting situations. If we �x the depth (Figure 5.3b) the number of

links distribution resembles closely the size distribution (Figure 5.3a). This is not

completely surprising, since the two quantities are correlated. In this case we

observe a larger number of links for all simulations compared to the number of

links in the real cascades since the simulated cascades themselves are bigger. If, in

contrast, we �x the cascade size to �t the observed cascades size (Figure 5.3d), we

observe a typically smaller number of links. Combining these observations on both

plots we conclude that real spreading cascades are denser than simulated ones, a

clear qualitative feature not captured by the simple SIR model. Finally we note

that most cascades are trivial, featuring depth equal to one and correspondingly

small size.
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(a) Size of cascades with �xed depth. Curves
corresponding to the interest graph and CM
superposed.
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depth. Curves corresponding to the interest
graph and CM superposed.
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(c) Depth of cascades with �xed size.
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(d) Number of links of cascades with �xed size.
Curves corresponding to the interest graph, RB
and CM superposed.

Figure 5.3 – Simulation of �le spreading on di�erent underlying networks: complementary
cumulative distribution of cascade properties

To sum up, we have compared simple topological properties of real spreading

cascades and simulated cascades from a calibrated SIR model, with comparable

depth and size. We have observed that simulated cascades are relatively “wider”

whereas real cascades are relatively “elongated”, that is, real cascades have a smaller

size per depth ratio. Moreover, real cascades are typically denser than simulated

ones. In terms of interplay between underlying network structure and the simple

SIR spreading cascades, we have observed that respecting the interest graph degree

distribution was the only property that caused a striking change in simulations
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behavior on the considered random networks. Indeed we have observed sharp

qualitative dissimilarities between the simulations on the ER graph (di�erent de-

gree distribution) and no sensible dissimilarities between the simulations on the

CM, RB and the interest graphs.

5.3 SI model on the dynamic interest graph

In our analysis, we proceed as in section 5.1, where we de�ned a sequence

of increasingly realistic random graphs, in the sense that they have a topology

increasingly similar to the interest graph. Recall the schematic representation of

this graphs in Figure 5.1: we begin with an Erdös-Rényi (ER) random graph with

the same density and size as our interest graph, the simplest random graph in our

sequence. This graph is followed by a Con�guration Model (CM) random graph

with the same density and degree distribution. Next we have generated a random

bipartite graph with degree distribution as our original bipartite graph, whose

projection in the set of peers (RB) yields a graph with similar density, degree distri-

bution and local clustering as the interest graph. In sum, for each new element of

this sequence of (uniformly chosen) random graphs we introduce a new structural

constraint to make it closer to the interest graph.

In the following, we simulate the spread of the �les F on the random graphs

described in the previous paragraph using the models examined in the Chapter 4,

namely the SI with homogeneous and heterogeneous node behaviors (in terms of

inter-contagion time distributions). For each SI model we perform two simulations:

the �rst with the (static) random graphs and a second simulation in which we

consider dynamic versions of the random graphs in the �rst simulation. More

precisely, we have used the methodology to generate a dynamic interest graph

from the static interest graph using the connection data, presented in section 4.2.1.

At each instant t > 0 each node is present in the random graph if it was on-line at

this instant in the P2P system (or equivalently, if it is present at this instant in the

dynamic interest graph).
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5.3.1 Homogeneous node behavior

We begin simulating the spread of the �les F on the random graphs using

the simplest model explored in this chapter, namely the SI with homogeneous

inter-contagion time. The �rst batch of simulated cascades was generated using

the following static graphs: ER, CM and RB graphs, with shu�ed initial providers

and CM, RB and the interest graph with matching initial providers. The results are

plotted in Figure 5.4, where we see the six curves superposed for each property

distributions plot. This indicates that the model is insensitive to all the variations

we examined, which suggests that it is not a realistic model to capture user inter-

action. Surprising as this result may seem, it is not so di�erent from the results

obtained in the previous chapter, when we have investigated the impact of the

topology for key cascade properties. Indeed, in that experiment, simulations on

random graphs yielded similar sets of cascades for all graphs, except the ER graph,

which failed to produce a comparable set of cascades in that framework. Compared

to the models examined in the previous chapter, these models are di�erent in the

following aspects: it features an inter-contagion time and users remain active until

they disconnect at the �nal time T . These are important di�erences, but when

considered in isolation, they were insu�cient to generate di�erent sets of cascades.

The same is true for heterogeneity: this change had no signi�cant impact on the

structure of the generated cascades.

In the following we examine the SI model and variations in the same ran-

dom graphs tested previously, taking into account the connection patterns of the

nodes. That is, each random graph is rendered dynamic, considering the con-

nection/disconnection times for each node, as computed in the beginning of this

chapter. We have generated a set of cascades using the homogeneous model and

plotted the results in �gure Figure 5.5. The generated sets of cascades remain

similar to the sets of cascades generated in the previous trial, albeit with slight

more variance between curves.
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Figure 5.4 – Complementary cumulative distribution of cascade properties in static random
graphs and homogeneous node behavior. Plots shown in lin-log and log-log scale (inset).
Spreading model is insensible to variations on network topology and initial providers. All
curves superposed in the three graphs.

5.3.2 Heterogeneous node behavior

Now, we consider the same setting as the �rst trial, but using a SI model with

a heterogeneous behavior of nodes. More precisely, we consider �rst the static

random graphs (Figure 5.6), followed by the dynamic random graphs (Figure 5.7),

as we did previously. In contrast to the previous simulations, we see a sharp

distinction between two types of cascade pro�les, indicated by the superposition of

two sets of curves. That is, in the interest graph and in the random graphs where

we have matched the degree distribution of the initial providers, the simulations
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Figure 5.5 – Complementary cumulative distribution of cascade properties in dynamic
random graphs and homogeneous node behavior. Plots shown in lin-log and log-log scale
(inset). Spreading model is insensible to variations on network topology and initial providers,
with minor variations. All curves in the inset graph are superposed.

yield sets of cascades with similar pro�le. This heterogeneous SI model with ICT

is sensitive enough to highlight a topological di�erence between the variations

considered, namely the degree distribution of the seeds. Additionally, it shows that

in the context of time-bounded simulations like ours, the impact of local clustering

might be negligible compared to the degree distribution.
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Figure 5.6 – Complementary cumulative distribution of cascade properties in static random
graphs and heterogeneous node behavior. Plots shown in lin-log and log-log scale (inset).
Spreading model features the essentially same behavior on all graphs if the degree distribution
of initial providers is shu�ed and likewise a similar behavior on graphs with similar initial
provider degree distribution.

5.4 Summary

We have inspected the interplay between the underlying network and the model

simulating �le spreading in di�erent networks. In particular, we have simulated

the simple SIR model in a sequence of uniformly random graphs derived from the

random graph, with increasing complexity. Furthermore, in terms of the studied

properties, the simple SIR model generates similar cascades on random networks

having the same degree distribution as the interest graph. We have also found that
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Figure 5.7 – Complementary cumulative distribution of cascade properties in dynamic
random graphs and heterogeneous node behavior. Plots shown in lin-log and log-log scale
(inset). Spreading model features the essentially same behavior on all graphs if the degree
distribution of initial providers is shu�ed and likewise a similar behavior on graphs with
similar initial provider degree distribution.

in our setting (with simulation time constraints) the addition of clustering on the

random graph did not change the properties of the spreading cascades qualitatively.

Given the improvement in performance brought about integrating temporal

patterns into the models, we have tested the impact of the underlying network

structure in the di�usion process, using the framework introduced in the previous

chapter. More precisely, we have simulated this model on a series of increasingly



5.4. Summary 83

realistic random graphs derived from the interest graph. In this case, as throughout

the chapter, our simulations have a time-span constraint, to �t the observed time

window, in contrast with the usual asymptotic analysis found in the literature. In

this “out of the equilibrium” regime, we found that models with homogeneous peer

behavior are essentially insensible to all the canonical properties examined. In

contrast, models featuring heterogeneous peer behavior were sensible to selected

topological properties. More precisely, the topological property with the biggest

impact on the simulated cascades was the initial providers degree distribution.

Moreover, common graph properties with a demonstrated impact in asymptotic

analysis have a minor impact in our simulated cascades. This �nding highlights

the importance of a frequently overlooked albeit important property in spreading

cascade simulations. Also, this result reinforces the rationale to examine models

featuring heterogeneous peer behavior.
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I
n this thesis we set out to study quantitatively real-world di�usion, focusing

particularly on spreading cascades as our central object of study. The impor-

tance of this topologically rich object emerged in recent years, with the advent of

several empirical works examining on-line di�usion. Though these works have

undoubtedly advanced our knowledge of spreading dynamics, we barely scratched

the surface. On the empirical side, it has proven challenging to characterize cas-

cade structure in terms of simple measures, as they generally feature a complex

structure. In particular, various cascade properties have been investigated, but to

this day there is no consensus on which properties make a satisfactory synthesis of

the cascade structure. On the theoretical side, studies in the literature have focused

on predicting the fraction of infected individuals in a given population in the long-

term – as discussed previously, important asymptotic results relating topological

properties of the underlying network (notably in terms of degree distribution and

spectrum) were established in the last decade. However, similar theoretical studies

in terms of cascade structure theoretical are still an open research area. Hence, a
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better understanding of the empirical data, the theoretical models and, particularly,

the link between both is also crucial to the characterization of information di�usion

in large real-world networks.

We have decided to examine in this thesis the most popular family of network

di�usion models, comparing it to real-world di�usion data. In particular, instead of

exploring the parameter space of these models in the search of parameters capable

of generating realistic cascades, we have investigated if these models generated

realistic cascades with the most likely parameter values given our data. That is, we

have supposed those models were able to account for the dynamic of the observed

di�usion and calibrated the models accordingly, using standard parameter infer-

ence techniques. We then compared simulations of the calibrated model to the

real-world data. In the following, we discuss this distinctive data-driven approach.

6.1 Summary and contributions

In this section we summarize the contributions of this thesis in context and

discuss the challenges we have faced and the the decisions we have made in the

course of this work.

6.1.1 Framework and empirical characterization

Our �rst contribution was to identify a rich dataset for the study of di�usion

and propose a framework to do so. As we have discussed in detail in Chapter 3,

standard di�usion models are based upon local transmission rules, which take into

account the structure of the underlying graph. Therefore, in order to calibrate the

spreading model parameters we needed both the underlying graph and the set of

spreading cascades. We reconstructed the directed acyclic graphs representing the

spreading cascades from the spreading trace. To obtain the interest graph of peers,

we proposed a methodology to reconstruct it from the bipartite graph of peers and

shared �les.
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In terms of empirical exploration, we have characterized the spreading cas-

cades in terms of three key structural properties – size, depth and number of links.

Standard topological properties of the interest graph were analyzed and we have

observed a small diameter, an heterogeneous node degree distribution, low global

density and high local clustering. Hence, we have shown that the interest graph

topological properties are consistent with the empirical literature on complex

networks, and thus, suited for our analysis of di�usion on complex networks.

As discussed in Chapter 1, publicly available datasets su�ered with missing data

regarding the di�usion trace or the underlying network until recently. Though,

since the beginning of this thesis a number of large-scale rich datasets have been

published, it made sense to gather our own dataset
1
.

6.1.2 Inadequacy of the simple SIR and extensions

Turning to the question of the model examination, we have decided to focus our

analysis on the most popular family of epidemic di�usion models: the SIR model

adapted to networks and derivatives (in particular we begin our analysis with

the simplest SIR model). We have compared the real-world data with simulations

from model in question, set up to behave as closely as possible to the real �le

spreading if we assume the �le spreading followed the model dynamic. Indeed we

have calibrated the parameters with parameter which maximize the likelihood, in

agreement with the framework discussed in [Goyal et al., 2010]. In addition to the

spreading parameters of the model, we have also identi�ed the initial providers

or “seeds” in our dataset to use them as a simulation input. As we remark in the

�rst chapter, despite the numerous papers dealing with the theoretic/asymptotic

analysis of these models or their applications, there are surprisingly few papers

devoted to the calibration of such network di�usion models with real-world data.

Moreover, the question of time bounds in the observed data and its potential im-

pacts is hardly discussed, even though data gathering is frequently bounded in time.

An important methodological challenge in the comparison of simulated and real

spreading traces concerned the time bounds of the real-world data: the evolution

1. The dataset description and the empirical �ndings are summarized in [Bernardes et al., 2012]



88 Chapter 6. Contributions and perspectives

of the simple SIR model is given in terms of an intrinsic time (namely, the number

of steps in the simulation algorithm), which is not comparable with the time scale

of the real di�usion events, as recorded in the trace (measured in “real” time, e.g.,

seconds). Thus, in order to compare the simulated and real spreading cascades, we

have decided to hold one property constant, say size (or depth) and, for each �le,

generate a simulated cascade with the same size (or depth) as the corresponding

real cascade and compare the remaining properties. In other words, let the SIR

model spreading parameters be calibrated and a set of seeds for each �le be given.

If we generate a set of cascades in which each �le has the same size (or depth) as

the corresponding real cascade, how does the distribution of the other properties

for the set of generated cascades compare with the real ones? The simulation

results revealed that the simulated cascades were qualitatively di�erent from the

real ones. Indeed, real-world cascades were typically more “elongated” and with a

greater number of links compared to generated cascades. This �nding naturally

raised an alarm against the common assumption that di�usion phenomena closely

resemble simple epidemic models.

In fairness, the fact that the simple SIR model was unable to generate realistic

cascades in the framework considered does not imply that this model is invalu-

able. Indeed, it is based upon few and simple assumptions, but enough to yield

an interesting dynamic. This is positive in and of itself and su�cient to be a

potential archetype for the observed di�usion phenomenon. That said, before we

conducted the experiment we thought this model would likely be too simple to cap-

ture the observed spreading structure so, in this sense, the divergent results were

expected. However, we also expected that two natural SIR model extensions, which

take into account heterogeneities found in our data (namely �le popularity and

peer behavior), might generate substantially more realistic cascades. Surprisingly

enough, subsequent experiments with these model extensions yielded cascades

which remained substantially divergent from the real-world cascades (they were

as divergent as the cascades generated with the simple SIR model). In sum, the

simplest SIR and two considered extensions (natural as they were, given the data)

were insu�cient to generate realistic spreading cascades.

At this point it became clear that in order to improve the model, we had to
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explore other re�nements. Going back to the data, we had observed in Chapter 2

that there is a substantial number of nodes with small degree, which have par-

ticipated in the P2P system shortly and which have exchanged �les with a small

number of nodes (which typically feature a high degree). From the perspective of

an infecting peer – i.e., a node which has just become infected and is about to infect

its neighbors – the probability of infecting any of its neighbors is homogeneous in

all the models considered until that point
2
. Therefore, star-like nodes in the graph

– i.e., highly connected nodes having a lot of small degree “satellites” connected

to it – might contribute to the generation of cascades with bigger size-to-depth

ratio. In other words, the interplay of the examined models and the underlying

graph might generate cascades less elongated than the ones we observe in the

data. Hence, we hypothesized that the missing ingredient in the spreading models

examined up to that point might have been a notion of a�nity between infecting

nodes and their target, which would in�uence the infection probability between

this pair of nodes.

We proposed a straightforward measure of a�nity between each pair of peers in

the context of P2P �le spreading, namely the interest a�nity, given by the number

of �les both peers have been interested in. With this extra information the original

interest graph becomes a weighted interest graph. Next, we adapted the di�usion

dynamics to the weighted graph, assuming that �les spread easier between nodes

with greater a�nity in the spirit of [Onnela et al., 2007], a study of real-world

di�usion of information on weighted graphs. Hence, the spreading probability in

the adapted di�usion process became a function not only on the infected node, but

also in its target through the a�nity measure. In other words, it depended on the

weight of the edge connecting both nodes. Once these modi�cations were made,

we have calibrated the new model and generated a set of spreading cascades. The

new simulated cascades revealed a persistent divergence in cascade shape pattern

found previously: they are also typically much shorter and wider compared to

the real spreading cascades. Since the impact of the introduction of the a�nity

measure was qualitatively insigni�cant we concluded that the absence of this

2. Recall that in the heterogeneous models examined in Chapter 3, the probability of infecting

one’s neighbors might change according to the infecting node itself or according to �le being spread,

but not according to the infected node’s neighbor, as each infecting node does not distinguish its

neighbors in its contagion attempts.
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parameter was not the primary shortcoming of the original model.

To sum up, we recall that we are interested in evaluating the pertinence of

epidemic contagion models to reproduce key structural properties of real-world

spreading cascades. We began examining a simple and arguably the most popular

network di�usion model in the literature and established its inadequacy to gener-

ate realistic spreading cascades, in terms of the patterns found in �le spreading

cascades on P2P systems. Given the �exibility/generality of the spreading dynamic

and the multitude of factors which may have an impact on the di�usion dynamic,

it is hard to categorically reject the SIR model as inadequate di�usion model in

practice, so we decided to investigate natural extensions to the model, which

explore key properties found in the data. We have examined improvements both in

terms of the spreading dynamic (heterogeneous models according to peer behav-

ior or �le popularity) and in terms of the underlying network structure (interest

a�nity measure) and found they did not bring about, separately, major changes

in the shape of the simulated cascades. These results combined suggest that the

the assumption that the simple SIR model models the dynamic of the spreading

process, particularly in the context of P2P systems, may not be veri�ed.

6.1.3 Temporal patterns analysis and integration

Although the introduction of the a�nity measure did not improve the sim-

ple SIR model sensibly, we had an intuition this distinguishing the interaction of

peer sharing occasional �les and more present peers was a key element missing

in the model. Hence we thought about integrating the interaction time directly

into the model, namely transforming the original interest graph into a dynamic

graph. In this way, the spreading impact of transient nodes would be signi�cantly

diminished compared to more present nodes, with a more steady presence in the

network. Evidently this signi�cant change in the interest graph presupposes, �rst,

the connection times of each node and an adapted spreading model which would

evolve in seconds – that is in “real” time, as opposed to an intrinsic simulation

time. Indeed, the spreading process is supposed to interact with the graph, taking

into account the nodes and links present in the system at time t > 0 measured in
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seconds and the process is supposed to evolve in the same time scale.

As we discussed in Chapter 4, although our dataset features temporal data

in terms of time stamps for request events, but not the connection events for all

peers, we had to reconstruct connection times from the data we had. Using statis-

tical methods we have inferred likely connection and disconnection times for each

node in the graph, which in turn we used to reconstruct the dynamic interest graph.

In terms of the di�usion process, we decided to abandon the simple SIR and use

instead a SI model with a latency between the time a node becomes infected and

the time it infects each of its neighbors, namely the “inter-contagion time” (ICT).

Again making a fairly standard assumption that these times are also distributed

according to exponential times, we were able to calibrate them using the available

data and embed the process with a time scale evolution in terms of seconds, as

we wanted. Furthermore, we decided to examine two variants of these models:

one in which the ICTs follows the same distribution for all nodes, that is, the node

behavior is homogeneous and another in which each node has his own exponen-

tial distribution, to account for the heterogeneous behavior of peers. Finally, we

adapted the calibrating methods to this new model as we did throughout the model

examination.

Once we adapted all parts of the framework we have simulated the temporal

SI models on the dynamic interest graph: in terms of cascade size, the results

were strikingly improved with respect to the previous simulations. Indeed, we

reproduce a set of cascades with similar size as the real-world distribution. The

distribution of the number of links was also improved, to a lesser extent. The

sole property we could not improve qualitatively was the depth of the simulated

cascades, which remained small compared to the real ones. Since we changed

two major factors with respect to previous experiments (underlying network and

di�usion process), we decided to assess the individual impact of each improvement.

Since the dynamic graph presupposes a temporal di�usion process, but not the

converse, we decided to simulate the same model on the original (i.e., static) graph

and compare with the simulation of the same model in the dynamic graph. Com-

paring both simulations we conclude that the change in the model alone did not
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bring about the improvement in simulated cascade properties found previously.

Hence, we conclude that the key improvement is due to the dynamic graph or the

combination of the dynamic graph associated with the temporal SI model.

6.1.4 Impact of the underlying network structure

In our quest to identify the relevant factors taken into account by the di�usion

model, we have developed an experiment to investigate the impact of the underly-

ing network structure on the simulated spreading cascades. As we have mentioned

in the �rst chapter, there are theoretical results in the literature linking graph

properties and the asymptotic behavior of epidemic spreading models such as the

SIR model family – summarized for instance in [Barrat et al., 2008]. In this sense

we expected a priori that the empirical properties of the underlying network would

play a role in the spreading simulation, even though our framework of simulation

is outside the scope of these theorems. Indeed, the originality of our approach is

precisely analyzing di�usion models in more realistic settings, comparing with

real datasets, which are naturally bounded in time. Hence, the interest to uncover

the impact of these properties taking into account time constraints.

The interest graph has a rich topological structure, which evolved organically

through the interaction of peers sharing �les. As pointed out in Chapter 2, it also

features properties common to other complex networks, particularly low density,

heterogeneous node degree distribution, and local clustering. Evidently these

properties are not independent from one another, so in order to assess the impact

of these properties individually, we decided to generate a sequence of random

graphs, beginning with a baseline graph derived from the interest graph and in-

crementally adding the properties in question; monitoring the behavior of the

simulations from one graph in the series to the other one can identify the impact

of each property. Fortunately, in the last decade, methods have been developed to

generate uniform random graphs closely matching the target properties mentioned.

We began this analysis using the simple SIR as we describe in Chapter 3. Using

the model input computed in our framework (that is, same seeds, spreading param-

eters and bounds in time) we have simulated this model on all graphs and obtained



6.2. Perspectives 93

essentially the same results for all graphs except the baseline graph. That is, all

graphs having same degree distribution yielded the same cascade pro�les, which

suggest that this graph property had a primary impact on the simulation and that

the other properties were unimportant. Next we have performed the same analysis

with the temporal SI models (i.e., featuring an inter-contagion time), with two

extra variations to measure the impact of the connection patterns and of the seeds’

degree distribution. Again using the model inputs obtained in our corresponding

framework we have concluded that temporal SI model with homogeneous peer

behavior is insensitive to the increment of complex networks’ topology properties.

In other words, simulated cascades feature the same pro�le, despite the increment

in complex topology properties given by the random graph sequence. In contrast,

examining the temporal SI model with heterogeneous peer behavior we found

that this model is highly sensitive to the seeds’ degree distribution. Indeed, this

property was the single most important factor in this case; the other properties

of the graph were secondary or unimportant. Given that this temporal SI model

was the most realistic model tested, this draws attention to a relevant though

overlooked condition for epidemic di�usion models in time-bounded simulations:

the seed nodes degree distribution.

6.2 Perspectives

The analysis done in this thesis opens numerous perspectives, which we present

in the following. We have grouped them in terms of empirical works and modeling

(di�usion and general framework), given that the work presented here is in the

intersection of those two domains.

6.2.1 Empirical

On the empirical side, our analysis was founded on the analysis of spreading

cascades in terms of their structural pro�le, characterized by their size, depth

and number of links. Though these measures provided a valuable information

and made for a rich analysis, they remain very simple compared to the spreading
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cascade as an object, a directed acyclic graph. Indeed, it would be interesting to

explore other measures which capture overlooked aspects in our analysis (such as

motif frequency, cascade clustering, spectrum, etc) or which better represent the

spreading cascade. In this sense, [Goel et al., 2012] have proposed a new measure

for information cascades, the Weiner coe�cient, to quantify the virality of the

cascade. It would be interesting to characterize the observed cascades in terms of

these measures and integrate them to our framework.

Also in terms of empirical approaches, given that most cascades are trivial or

quite small, an interesting strategy to better understand the di�usion mechanisms

to focus on the rare but most interesting cascades featuring a reasonable num-

ber of nodes. Also, it would make clearer the correlation study among di�erent

spreading cascade properties. Such move could facilitate the identi�cation of more

relevant patterns, potentially in conjunction with the new measures in the previous

paragraph, and simplify the identi�cation of more pertinent (albeit specialized)

characteristics.

Finally, a major perspective concerning this analysis would be to apply it to

other datasets and compare to the results obtained here. Evidently, we acknowl-

edge that many of the di�culties in modeling information spreading we have

faced can be the result of data speci�city. However, in our defense, it has been

argued in [Leibnitz et al., 2006] that spreading of �les in P2P follows a SIR-like

dynamic: though this claim was purely theoretical and not data-driven, it was

still a good additional reason (in addition to the intrinsic qualities of the model

and its widespread use) to make a throughout examination of this model and its

extensions. In the case the framework yields di�erent assessments of the same

model to di�erent data, it will be no doubt interesting to identify the relevant

characteristics which justify the di�erence. If, on the contrary, epidemic models

remain unsuitable to other datasets, it will make stronger the case against the

careless use of these models when dealing with real-world data.
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6.2.2 Di�usion model

In terms of di�usion models, one of the most direct perspectives is to adapt

some of the simple SIR model extensions to the temporal SI model and examine the

impact of those. Indeed, once established a major factor impacting cascade pro�les,

one can test the impact of other pertinent factor, which had a second-order impact

previously. Namely, it would be interesting to verify the impact of di�erent �le

popularity in the spreading behavior. The same is true for the weighted graph.

Indeed, it would be interesting to assess the impact of the a�nity measure in

the dynamic graph, since it is possible to combine the weighted graph de�ned in

Chapter 3 with the node connection data to generate a weighted dynamic graph.

In terms of weight, we could also try other weight functions, such as considering

that very popular �les contribute little to the a�nity score of a pair of peers, since

numerous users possess the �le in question; in this sense, rarer �les provide more

information about the true a�nity between two peers. It is hard to guess a priori

if this would be a better a�nity measure, but no doubt it is worth investigating

the impact of other weighted graphs.

Another perspective consists in incorporating tools and results from related

�elds. In this regard, we have already bene�ted from a collaboration with col-

leagues from Université Catholique de Louvain (UCL): we have submitted a joint

paper where we proposed a Markovian model to mimic a non-trivial property

in the �le request pro�les in P2P systems (more precisely this study exploited

the same dataset we described in this thesis). In particular, our method generates

arti�cial requests trace, similar to our dataset, which can be analyzed as synthetic

datasets. We decided to perform the same analysis we have done throughout the

thesis to a generated di�usion trace. We have shown that although the �le request

patterns of peers and the di�usion models are related, the link between the two

remains uncovered. In fact, although the arti�cial trace in question reproduces

some realistic request patterns, the corresponding cascades are also qualitatively

di�erent from the cascades observed in practice in the real-world data. The analy-

sis which remains to be done is to assess the exact correlation between the two

properties, namely spreading cascades and �le request patterns.
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Finally, an important research perspective is to re-examine the fundamental

spreading assumption underlying all the models examined so far. As we have dis-

cussed previously, we have examined the most widespread used family of models,

the epidemic-inspired SIR model and variations, which assume that the spread of

information from one node to the other depends on the in�uence of the spreader

or on the receptivity of the receiver (or on a combination of both). This is not

the only possible di�usion mechanism available in the literature. Indeed, another

important class of models, threshold or adoption models, assumes that the spread

of information depends primarily on the social circle of the receiver. In network

terms, the neighboring nodes of the potential receiver node play a key role in the

likelihood that he or she “adopts” the information. In this case, nodes are typically

more likely to adopt an information if there is a large number (or fraction) of their

neighbors which have the information already.

As we mentioned in the �rst chapter, perhaps the most famous paper associated

with this model is [Granovetter, 1978], a sociological study of crowd behavior. In

the context of network di�usion, these models were popularized, among others,

by Dodd and Watts [Dodds and Watts, 2005]. These works consisted of numerical

experiments which explored di�erent scenarios assuming this spreading mecha-

nism. However, despite the interest this approach attracted, very few papers apply

it in conjunction with a parameter estimation framework to study of real world

cascades as it was done for SIR models in this thesis and elsewhere [Saito et al.,

2008, Goyal et al., 2010].

One of these infrequent works, which models the di�usion with an adoption

model whose parameters are calibrated using real-world data, is [Bakshy et al.,

2009]. The model they use is not the typical model popularized by Dodds and Watts,

where the node’s neighborhood directly a�ects the adoption outcome. Rather, they

consider a continuous-time model of adoption with stochastic rates of adoption

instead of adoption probabilities. The dynamics of this model is as follows: a node

enters into state k at the moment that their kth neighbor adopts the information

being spread. The model assumes that once an individual is in state k, the time

until they adopt, Tk, is exponentially distributed, i.e. they draw an exponentially

distributed random variable Tk with mean 1/λk where λk will be referred to as the
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adoption rate for state k. If a node state changes before they reach their adoption

time, they discard that time and draw a new time from the next exponential distri-

bution corresponding to their new state. If one of their existing neighbor adopts,

they advance to state k + 1.

This model admits extensions that take into account various heterogeneities,

is also compatible with dynamic graphs and its parameters can be estimated using

a maximum of likelihood. Hence, it would be no doubt interesting to develop

the same study conducted in this thesis using this alternative di�usion model

instead of the epidemic models suggested so far. As we mentioned in the Empirical

perspectives section above, theoretical works on information di�usion models in

the context of P2P �le sharing systems wagered on epidemic models, particularly

the SIR model, as the best candidate to describe information di�usion in these

networks, so it made sense to investigate these models exhaustively with priority.

6.2.3 General

In a more theoretical note, the �rst general perspective opened with this study,

particularly as a consequence of the study of the network topology impact, is to

extend the analysis using other model inputs. As discussed previously, the set of

seeds, spreading parameters and time bounds were determined as a function of

our framework, which in turn dealt with a real dataset. Ideally, for each input

parameter it would be interesting to vary the values considered to have a better

sense how these important di�usion models behave in constrained time. This is

both an important and straightforward perspective, given what has already been

developed in this thesis.

Still regarding the question of better understanding the behavior of these mod-

els in particular settings, examining other kinds of underlying networks would

be interesting, particularly other kinds of dynamic graphs. The dynamic graphs

we have studied consisted essentially of static graphs made dynamic following

the connection and disconnection of peers; thus, if any two peers remain on-line,

no changes in the corresponding link between the two nodes will change. In
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contrast, other kinds of dynamic graphs, such as contact networks, are such that

the evolution of graphs is usually given by the appearance and disappearance of

links between individuals. This di�erent “evolution nature” would likely impact

the models di�erently. Indeed, we have seen recently a growing interest in the

interplay between epidemic contagion models and this kind of dynamic graph in

the literature from a theoretical angle [Karimi and Holme, 2013, Lambiotte et al.,

2013].

In conclusion, once we have accumulated su�cient information on the evo-

lution of these models in all the aspects listed so far, we will be able to identify a

representative enough behavior of these models to develop a direct way to test the

hypothesis that a certain empirical di�usion trace can be explain by such models. In

this sense, a Bayesian statistics approach may prove interesting, as the evaluation

process involves calibrating the model with the most realistic parameters given

the data and we might have some a priori knowledge of the parameters.

In any case, many research directions remain open and, although characteriz-

ing information on complex networks is no doubt challenging, the relevance of

this subject remains great, from a purely scienti�c perspective as well as from an

applied perspective.
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Appendix A

Résumé

Dans cette thèse, nous avons étudié la di�usion de l’information dans les grands

graphes de terrain (des réseaux d’interaction complexes réels), en se focalisant par-

ticulièrement sur les patterns structurels de la propagation. Plus précisément,

notre objet d’étude central est la cascade de di�usion, c’est-à-dire, le graphe qui

relie les nœuds du réseau (qui représentent des individus, machines, etc) par où

l’information est passée, en mettant en évidence “qui a transmis l’information à

qui”. Cet objet topologiquement riche a reçu beaucoup d’attention depuis quelques

années grâce à la disponibilité de traces numériques détaillées sur des événements

de di�usion en ligne (email, �chiers, tweets, etc.). Sur le plan empirique, il s’est

avéré di�cile de capturer la structure des cascades de di�usion en termes de

mesures simples. Diverses propriétés des cascades ont été étudiées, mais on n’a

pas encore trouvé un ensemble de propriétés simples permettant de synthétiser

la structure des cascades. Sur le plan théorique, l’approche classique consiste à

étudier des modèles stochastiques de contagion et de percolation sur des graphes

aléatoires ou réguliers. Le traitement analytique de ce type de modèle sur des

structures discrètes s’avère di�cile, mais malgré la complexité, plusieurs résultats

concernant le comportement asymptotique de modèles simples sont apparus dans

la littérature. Néanmoins, le champ d’application de ces modèles reste limité, car

les cascades réelles ont généralement une topologie complexe et le processus de

di�usion se produit dans une fenêtre de temps limitée (généralement pas assez

grande pour l’analyse asymptotique). Par conséquent, une meilleure compréhen-

sion des données empiriques, des modèles théoriques et du lien entre les deux est

également cruciale pour la caractérisation de la di�usion dans les grands graphes

de terrain.

Ce document est organisé de la manière suivante : nous commençons, au pre-

mier chapitre, par un état de l’art sur les graphes de terrain et la di�usion dans ce
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contexte. Dans le chapitre 2, nous décrivons notre jeu de données et discutons sa

pertinence dans le contexte du premier chapitre. Nous présentons la procédure de

reconstruction du graphe sous-jacent (où se passe la di�usion) et des cascades de

di�usion. Ensuite, dans le chapitre 3, nous évaluons la pertinence d’un des modèles

classiques de di�usion sur les réseaux : le modèle SIR. Nous examinons également

quelques extensions de ce modèle qui prennent en compte des hétérogénéités de

notre jeu de données, ainsi qu’un ra�nement du processus de reconstruction du

graphe d’intérêt. Dans le chapitre 4, nous explorons la prise en compte du temps

dans l’évolution du réseau sous-jacent et dans le modèle de di�usion. Dans le

chapitre 5, nous évaluons l’impact de la structure du graphe sous-jacent sur la

structure des cascades de di�usion générées avec les modèles étudiés dans les

chapitres précédents. Nous terminons ce document par un bilan des résultats (que

nous résumons dans la suite) et des perspectives ouvertes par les travaux menés

dans cette thèse.

A.0.4 Méthodologie et caractérisation empirique des cascades
de di�usion

Notre première contribution a été d’identi�er un ensemble de données riche

pour l’étude de la di�usion et de proposer une méthodologie d’analyse. Les mod-

èles de di�usion classiques sont basés sur les règles de transmission locales, qui

prennent en compte la structure du graphe sous-jacent. Par conséquent, a�n de

calibrer les paramètres du modèle de di�usion nous avions besoin à la fois du

graphe sous-jacent et des cascades de di�usion. Nous avons ainsi construit – dans

un premier temps – des graphes acycliques orientés représentant les cascades de

di�usion à partir de la trace d’interaction des utilisateurs. Pour obtenir le graphe

d’intérêt des pairs, nous avons proposé une méthodologie pour le reconstruire à

partir du graphe biparti des pairs et des �chiers partagés.

En termes d’exploration empirique, nous avons caractérisé les cascades de

di�usion en termes de trois propriétés structurelles – taille, profondeur et nombre

de liens. En analysant des propriétés topologiques standards du graphe d’intérêt

des pairs, nous avons observé que le graphe a un petit diamètre, une distribution de
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degrés hétérogène, une faible densité globale et un fort clustering local. Ainsi, nous

avons montré que les propriétés topologiques du graphe d’intérêt sont compatibles

avec la littérature empirique sur les graphes de terrain, et donc adaptées à notre

analyse, qui se focalise sur la di�usion dans les grands graphes de terrain.

A.0.5 Pertinence du modèle SIR simple et de ses extensions

Quant à la question de l’évaluation du modèle, nous avons décidé de concentrer

notre analyse sur la famille la plus populaire de modèles de di�usion inspirées de

l’épidémiologie : les modèles SIR. Nous avons comparé les données réelles avec

des simulations du modèle SIR simple, calibré en supposant que ce modèle capture

bien la dynamique de propagation. En e�et, nous avons inféré les paramètres les

plus vraisemblables, en accord avec le cadre discuté dans [Goyal et al., 2010]. Nous

avons également identi�é les fournisseurs originaux ou graines de la di�usion dans

notre jeu de données pour les utiliser comme une entrée de simulation. Malgré

les nombreux articles traitant de l’analyse formelle de ces modèles ou de leurs

applications, il y a étonnamment peu d’articles consacrés à l’étalonnage de ces

modèles de di�usion de réseau avec des données réelles. En outre, la question des

limites de temps dans les données mesurées en pratique et de ses impacts potentiels

est à peine abordée, même si la collecte de données est souvent limitée dans le

temps.

Un dé� méthodologique important dans la comparaison des traces réelles et

simulées concerne l’étalement de la durée des simulations : l’évolution du mod-

èle SIR simple est donnée en termes de temps intrinsèque (à savoir, le nombre

d’étapes dans l’algorithme de simulation), ce qui n’est pas comparable aux données

temporelles sur la trace réelle de di�usion (mesurée en secondes). Ainsi, a�n

de comparer les cascades de di�usion simulées et réelles, nous avons décidé de

tenir une propriété constante, disons taille (ou profondeur) et, pour chaque �chier,

générer une cascade simulée avec la même taille (ou profondeur) que la cascade

réelle correspondante et comparer les autres propriétés. Autrement dit, étant don-

nés le modèle SIR calibré et un ensemble de graines de di�usion identi�ées pour

chaque �chier : si nous générons, pour chaque �chier, des cascades de di�usion
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de même taille (ou profondeur) que la cascade réelle correspondante, comment la

distribution des autres propriétés de l’ensemble de cascades générées se compare

avec les propriétés des vrais cascades ? Les résultats de la simulation ont montré

que les cascades simulées sont qualitativement di�érentes des cascades réelles. En

e�et, elles sont généralement plus “allongées” et ont un plus grand nombre de liens

par rapport aux cascades simulées. Cette constatation remet en cause l’hypothèse

courante selon laquelle les phénomènes de di�usion réels ont une dynamique très

proche de celle des modèles épidémiques simples.

En toute justice, le fait que le modèle SIR simple a été incapable de générer

des cascades réalistes dans le cadre considéré n’implique pas que ce modèle est

inintéressant. Au contraire, il est capable de produire une dynamique de conta-

gion non-triviale avec très peu d’hypothèses de base. Cela dit, avant de mener

l’expérience nous pensions que ce modèle serait probablement trop simple pour

décrire la structure du phénomène de di�usion observé et, dans ce sens, les résul-

tats divergents étaient attendus. Toutefois, nous nous attendions aussi à ce que les

extensions du modèle SIR qui prennent en compte la popularité des �chiers et le

comportement des pairs pourraient générer des cascades beaucoup plus réalistes

que le modèle de base. Contrairement à nos attentes, les expériences avec ces

extensions du modèle ont généré des cascades toujours sensiblement divergentes

des cascades réelles (et des cascades générées avec le modèle SIR simples). En

somme, le modèle SIR simple et les deux extensions qui tiennent compte des

hétérogénéités trouvés dans nos données étaient insu�santes pour générer des

cascades de di�usion structurellement réalistes.

Ainsi, pour améliorer le modèle, nous avons dû explorer d’autres possibilités.

Pour en revenir aux données, nous avons observé qu’il y a un nombre important

de nœuds avec un petit degré, qui ont fait peu d’échanges de �chier, typiquement

avec des nœuds ayant un haut degré. Par ailleurs, du point de vue d’un nœud

infectant (i.e., un nœud qui vient d’être infecté et est sur le point d’infecter ses

voisins) la probabilité d’infecter l’un de ses voisins est homogène dans tous les

modèles considérés jusque-là. Par conséquent, les nœuds en forme d’étoile dans

le graphe – c’est à dire, les nœuds fortement connectés à des nœuds “satellites”

avec petit degré – pourraient contribuer à la génération de cascades avec un plus
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grand rapport taille-profondeur. Autrement dit, l’interaction des modèles étudiés

et le graphe sous-jacent des pairs peut générer des cascades moins allongées que

celles que nous observons dans les données. Nous avons soupçonné ainsi que

l’ingrédient manquant dans les modèles de di�usion examinés pouvais être une

notion d’a�nité entre les nœuds, qui in�uencerait la probabilité d’infection.

Nous avons, alors, proposé une mesure d’a�nité simple entre chaque couple de

pairs dans le contexte des échanges de �chiers P2P, à savoir l’a�nité en terme des

intérêts en commun, donnée par le nombre de �chiers que deux pairs possèdent en

commun. Avec cette information supplémentaire le graphe d’intérêt initial devient

un graphe pondéré. Ensuite, nous avons adapté la dynamique de di�usion au

graphe d’intérêt pondéré, en supposant que les �chiers se di�usent plus facilement

entre les nœuds avec une plus grande a�nité, comme proposé dans [Onnela et al.,

2007]. Par conséquent, la probabilité d’infection du processus de di�usion calibré

devient une fonction non seulement du nœud infecté, mais également de sa cible

en fonction de la mesure d’a�nité. En d’autres termes, il dépend du poids de l’arête

reliant les deux nœuds. Une fois ces modi�cations apportées, nous avons calibré

le nouveau modèle et généré un ensemble de cascades simulées. Ces nouvelles

cascades ont révélé une divergence persistante : elles sont aussi généralement

beaucoup moins profondes et plus larges que les cascades réelles. Étant donné que

l’impact de l’introduction de la mesure d’a�nité a été qualitativement négligeable,

nous avons conclu que l’absence de ce paramètre n’a pas été le principal handicap

de la modélisation de base.

Pour résumer, nous nous sommes intéressés à évaluer la capacité des mod-

èles de contagion populaires à reproduire les propriétés structurelles des cascades

de di�usion réelles. Nous avons commencé par l’évaluation du modèle le plus

populaire dans la littérature et établi son incapacité à générer des cascades de

di�usion structurellement réalistes, comparé aux cascades de di�usion de �chiers

observées sur les systèmes P2P. Compte tenu de la multitude de facteurs qui peu-

vent avoir un impact sur la dynamique de di�usion, nous avons décidé d’évaluer

des extensions naturelles du modèle SIR, qui explorent les propriétés clés trouvées

dans notre jeu de données. Nous avons examiné les améliorations à la fois en

termes de dynamique de propagation (modèles hétérogènes selon le comporte-
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ment des pairs ou la popularité des �chiers) et en termes de structure du réseau

sous-jacent (mesure d’a�nité). Nous avons constaté qu’elles n’ont pas apporté des

changements majeurs dans la forme des cascades simulées. Ces résultats combinés

découragent le choix du modèle SIR pour modéliser la dynamique de di�usion

réelle, particulièrement dans le contexte des systèmes de P2P.

A.0.6 Patterns temporaux et leur intégration dans lemodèle

Bien que l’introduction de la mesure d’a�nité n’ait pas amélioré sensiblement

le modèle SIR simple, nous étions persuadés que distinguer l’interaction des util-

isateurs occasionnels des utilisateurs plus présents était un élément clé manquant

dans le modèle. Ainsi nous avons décidé d’intégrer le temps de présence directe-

ment dans la modélisation, en transformant le graphe sous-jacent en un graphe

dynamique. De cette manière, l’impact des nœuds peu présents serait diminué

de façon signi�cative par rapport à l’impact des nœuds présents plus régulière-

ment dans le réseau. Évidemment, cette modi�cation importante dans le graphe

sous-jacent nécessite, d’une part, des temps de connexion de chaque nœud et un

modèle de di�usion adapté qui évolue en secondes – c’est-à-dire, en “temps réel”,

par opposition à un temps de simulation intrinsèque. En e�et, le processus de

di�usion est supposé interagir avec le graphe, en tenant compte des nœuds et des

liens présents dans le système à tout instant de temps donné (mesuré en secondes).

Notre jeu de données contient des données temporelles (en termes d’horodatage)

des requêtes, mais pas des événements de connexion des pairs, donc nous avons

dû reconstruire ces temps de connexion à partir des données des requêtes. En

utilisant des méthodes statistiques, nous avons inféré les temps de connexion et de

déconnexion de chaque pair et nous les avons utilisés pour reconstruire le graphe

d’intérêt dynamique.

En terme de processus de di�usion, nous avons décidé d’abandonner le modèle

SIR simple et d’utiliser à la place un modèle SI avec une latence entre le moment

où un nœud devient infecté et le temps où il infecte chacun de ses voisins, à savoir

le “temps inter-contagion” (TIC). En faisant l’hypothèse que ces temps sont expo-

nentiellement distribués, nous avons pu calibrer ces TICs individuels en utilisant
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les données disponibles. En outre, nous avons décidé d’examiner deux variantes

de ce modèle : l’une dans laquelle le TIC suit la même distribution pour tous les

nœuds (comportement homogène) et une autre dans laquelle chaque nœud a sa

propre distribution exponentielle, pour tenir compte du comportement hétérogène

des pairs. En�n, nous avons adapté les méthodes de calibrage utilisées jusqu’à

présent à ce nouveau modèle.

Une fois la méthodologie adaptée, nous avons simulé le modèle SI temporel

sur le graphe d’intérêt dynamique : en termes de taille de cascade, les résultats ont

été remarquablement améliorés par rapport aux simulations précédentes. En e�et,

nous avons généré un ensemble de cascades avec une taille similaire à celle de la

distribution réelle. La distribution du nombre de liens a été également améliorée,

dans une moindre mesure. La seule propriété que nous n’avons pas pu améliorer

qualitativement est la profondeur des cascades simulées, qui reste faible par rapport

à celle des cascades réelles. Puisque nous avons changé deux facteurs majeurs par

rapport à la modélisation précédente (réseau sous-jacent et processus de di�usion),

nous avons décidé d’évaluer l’impact individuel de chaque amélioration. Comme le

graphe dynamique suppose un processus de di�usion temporelle, mais pas l’inverse,

nous avons décidé de simuler le même modèle sur le graphe d’intérêt original et

de le comparer avec la simulation du même modèle dans le graphe dynamique. En

comparant les deux simulations, nous concluons que le changement au niveau du

modèle exclusivement n’a pas apporté l’amélioration des propriétés de cascade

simulées trouvées précédemment. Nous en avons alors déduit que l’amélioration

est causée par le graphe dynamique ou par la combinaison du graphe dynamique

associé au modèle SI temporel.

A.0.7 Impact de la structure du réseau sous-jacent

Dans notre quête pour identi�er les facteurs pertinents pour le choix du modèle

de di�usion, nous avons proposé une expérience pour étudier l’impact de la struc-

ture du réseau sous-jacent sur la strucure des cascades de di�usion simulées. Des

résultats théoriques de la littérature relient les propriétés des graphes et le com-

portement asymptotique des modèles de di�usion épidémiologiques simples tels
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que la famille de modèles SIR. Dans ce sens, nous nous attendions a priori à ce que

les propriétés empiriques du réseau sous-jacent jouent un rôle dans la propagation

simulée, même si notre cadre de simulation ne satisfait pas les hypothèses de ces

théorèmes. En e�et, une contribution essentielle de notre travail est précisément

d’analyser les modèles de di�usion dans des conditions plus réalistes, en les com-

parant avec des données réelles, obtenues dans une fenêtre de temps bornée. Dans

ce régime de temps borné, nous ne disposons pas d’outils théoriques qui relient les

propriétés des graphes et la dynamique du modèle. Même les quelques théorèmes

asymptotiques disponibles ne portent pas sur des propriétés structurelles des cas-

cades de di�usion ; ils se concentrent sur la fraction globale de nœuds infectés et

sur la probabilité d’extinction de la propagation. Ceci montre l’intérêt de découvrir

l’impact de ces propriétés dans notre cadre.

Le graphe d’intérêt a une structure topologique riche, qui a évolué par l’interaction

des pairs partageant des �chiers. Il détient des propriétés communes à d’autres

graphes de terrain, particulièrement une faible densité globale/fort clustering local

et une distribution des degrés hétérogène. Évidemment ces propriétés ne sont

pas indépendantes les unes des autres, donc a�n d’évaluer l’impact de ces pro-

priétés individuellement, nous avons décidé de produire une séquence de graphes

aléatoires, à commencer par un graphe de base (dérivé du graphe d’intérêt) et

d’ajouter progressivement les propriétés en question. En surveillant le changement

sur la structure des cascades simulées d’un graphe d’une séquence à l’autre on

peut identi�er l’impact de chaque propriété. Nous avons utilisé des méthodes

modernes pour générer des graphes aléatoires uniformes avec les propriétés cibles

mentionnées.

Nous avons commencé cette expérience en analysant de le modèle SIR simple.

En utilisant les mêmes paramètres (probabilité d’infection et ensembles de graines)

calculés au chapitre 3 nous avons simulé ce modèle sur tous les graphes de la

séquence. La structure des cascades simulées a été essentiellement la même pour

tous les graphes sauf le graphe de base, qui n’a pas la même distribution de degrés

que les autres graphes. Ce résultat suggère que cette propriété a eu un impact

majeur pour ce modèle et pour l’échelle de temps de simulation considérée. Ensuite,

nous avons e�ectué la même analyse avec le modèle SI temporel (c’est-à-dire, com-
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portant un temps inter-contagion). Avec les paramètres calculés précédemment, au

chapitre 4, nous avons observé que le modèle de SI temporel avec comportement

des pairs homogène est insensible à l’ajout des propriétés topologiques complexes.

En d’autres termes, les cascades simulées présentent le même pro�l, en dépit de

l’ajout successif des propriétés topologiques complexes. En revanche, en simulant

le modèle de SI temporel avec le comportement hétérogène des pairs, nous avons

constaté que ce modèle est très sensible à la distribution des degrés des graines.

En e�et, cette propriété a été responsable de la di�érence de structure majeure au

niveau des cascades (l’impact des autres propriétés a été mineur). Étant donné que

ce modèle SI temporel a été le modèle le plus réaliste dans nos expériences, cela

souligne l’importance de la distribution des degrés des graines à la structure des

cascades simulées avec un temps borné.





Appendix B

Abstract

Understanding information di�usion on complex networks is a key issue from

a theoretical and applied perspective. Epidemiology-inspired SIR models have been

proposed to model information di�usion. Recent papers have analyzed this ques-

tion from a data-driven perspective, using on-line di�usion data. We follow this

approach, investigating if epidemic models, calibrated with a systematic procedure,

are capable of reproducing key structural properties of spreading cascades.

We �rst identi�ed a large-scale, rich dataset from which we can reconstruct the

di�usion trail and the underlying network. Secondly, we examine the simple SIR

model as a baseline model and conclude that it was unable to generate structurally

realistic spreading cascades. We extend this result examining model extensions

which take into account heterogeneities observed in the data. In contrast, similar

models which take into account temporal patterns (which can be estimated with the

interaction data) generate more similar cascades qualitatively. Although one key

property was not reproduced in any model, this result highlights the importance

of temporal patterns to model di�usion phenomena.

We have also analyzed the impact of the underlying network topology on

synthetic spreading cascade structure. We have simulated spreading cascades in

similar conditions as the real cascades observed in our dataset, namely, with the

same time constraints and with the same “seeds”. Using a sequence of uniformly

random graphs derived from the real graph and with increasing structure com-

plexity, we have examined the impact of key topological properties for the models

presented previously. We show that in our setting, the distribution of the number

of neighbors of seed nodes is the most impacting property among the investigated

ones.

Keywords: information di�usion, spreading cascade, SIR, complex networks.
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