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Complex systems are made of interrelated elements with emergent features,
i.e. which result from the interactions of the system's constituents and cannot
be directly inferred from these individual constituents. Therefore a complex
system cannot be reduced to the sum of its elements; this is precisely what
makes it �complex� and raises di�cult challenges.

Example of complex systems are very diverse, like the Internet topology
where machines are connected through communication wires, the Web where
hyperlinks allow users to navigate from page to page [AB02], peer-to-peer
networks where users exchange �les, but also online social networks, scienti�c
collaboration and co-publication networks, biological networks of interactions
between genes and proteins, linguistic networks, among others. They may
involve millions, sometimes billions of entities.

These systems may be modeled as networks (also called graphs) where
nodes represent the elements of the system and links materialize interactions
between these elements. The way nodes are connected constitutes the topology
of the network. Meta-data (i.e. attributes) can be associated with nodes and
links as key-value pairs. For example, individuals of a social network may be
characterized by their gender, language, and age, and their relationships may
be of various types: friendship, work relation, etc. The analysis of complex
networks has been the focus of many research works, and involves diverse
tasks such as:

• understanding the statistical properties of their topology,



4 Chapter 1. Introduction

• identifying nodes and links of interest,

• detecting abnormal nodes, links, and structures.

1.1 Network Dynamics & Link Streams

Until recently, real-world networks have mostly been studied as static objects.
However most of these networks are not static but dynamic, as elements and
connections appear and disappear over time. This is called topology dynam-
ics (see Section 5.1.1 for details). Another kind of dynamics is at stake:
�ow dynamics of processes that happen on networks (like information dif-
fusion and virus propagation), which may be observed with nodes and links
attributes. In this thesis we focus on topology dynamics because study-
ing this dynamics is essential to characterize networks and to e�ciently react
to these changes. For instance, investigating Web dynamics helps reveal user
behaviors [LMF]; studying the Internet dynamics helps detecting reliability
issues [LMO08]. However, capturing such dynamics is di�cult and, even when
appropriate datasets are available, the dynamics is not easy to describe and to
analyze. Revealing the underlying phenomena which lead to their evolution,
and understanding how and why these networks change over time, is
of high importance.

Dynamic networks may be classi�ed into three di�erent categories. The
�rst one consists of graph snapshots (called time-aggregated networks after
the decomposition of datasets of �ner granularity, see Figure 1.1) representing
the state of the network at di�erent moments of time. An example is the
topology of the Internet through the Autonomous Systems graph captured
each year [EHSF12]. The second kind of dynamic network consists of a net-
work where nodes and links existence is bound to time intervals (i.e. selection
of time points), sometimes called time-ordered networks. For instance,
face-to-face human interactions may have di�erent durations, from a few sec-
onds to many hours [BCC+13]; airline timetables are bound to �ight trajec-
tories between airports and are subject to changes in case of �ight delays.
A formalism has been proposed in [KKK00] to study network connectivity,
which has been used in several studies [SBF+08,KKT03,EP06,BHKL06].

The last kind of dynamic network consists of a series of changes (usually
called stream), like the addition (or appearance) and removal (or disappear-
ance) of nodes and links. Link streams represent dynamic networks as a
stream of chronologically ordered links, and are simpli�ed representations of
time-ordered networks where interactions are considered to be instantaneous
because duration is less important. Link streams are therefore a speci�c type
of stream that consists only of link additions (i.e. observed). They are ap-
propriate to the representation of interaction networks, which represent a
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Figure 1.1: (a) Time-ordered networks capture all observed data for network
dynamics. Nodes move forward in time and are connected at di�erent times,
enabling simultaneous visualization of network topology and di�usion pro-
cesses. (b) Time-aggregated networks may be time-ordered networks after
collapsing interactions that occur within certain time windows. [BWD+12]

large range of real-world networks. The activity of all online social networks,
telecommunication networks, search engines, and even credit card payment
systems may indeed be modeled by an interaction network. Each interaction
may be represented as a link between two entities, which appears when the
interaction occurs. Sexual networks and phone calls among people, email net-
works [DC05], retweets on the Twitter social network, and links between users
who use the same keywords in search engine are just a few examples of link
streams.

In spite of the diversity of complex systems which may be modeled as
link streams, link streams dynamics has barely been explored for two rea-
sons: network dynamics is itself a recent research topic, and the study of link
streams has only become possible since recent years thanks to the release of
large datasets of such precision. Most of dynamic networks studied so far
are indeed series of graph snapshots captured at a speci�c frequency, e.g. a
graph per month. The main issue1 consists in characterizing the evolution of
the underlying systems to better understand them and, in particular, di�er-
entiate normal dynamics from abnormal behaviors. From an analyst point of

1See related works in Section 5.1
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view who monitors a complex system and who has to raise alerts in case of
anomalies (like a credit card fraud or an intrusion in an intranet), identifying
and validating such events as fast as possible is critical. In other words, it is
necessary to determine where and when the topology of an interaction
network abnormally changes, ideally in a real-time fashion.

A signi�cant body of research in interaction networks focuses on the detec-
tion of anomalies over time, called events . These methods rely on statistical
analysis, visualization, data mining, etc. However the concept of event is usu-
ally related to speci�c applications, and a large part of these methods analyze
sequences of graph snapshots. They thus miss a large amount of informa-
tion available at a �ner granularity [CE07] and using time scales that may
be irrelevant to the scale of the real dynamics [KKB+12]. Finally, no general
methodology of link streams exploratory analysis for event detection currently
exists.

While the availability of large link stream datasets is rather new, we focus
our study on them because they have the potential to describe the dynam-
ics of large networks at a very precise granularity, contrary to graph snap-
shots [CE07,KKB+12,CPN+13]. Moreover, most studies on time-ordered net-
works focus on problems related to contact duration (e.g. temporal shortest
paths or mean time delay between two nodes) [KKK00,BC13,HS12,KKK+11],
whereas link stream datasets have no duration information associated to the
links. We study events because they are tightly related to the characteriza-
tion of link streams: nodes and links usually appear and disappear over time
in such streams, so a core research question is to determine to what extent
such dynamics is regular, and in which cases irregularities (i.e. events) oc-
cur. In this thesis we propose a methodology with no strong hypothesis on
data nor on the underlying system's behavior. Our methodology provides
an experimental framework for the exploration of real-world data
modeled as link streams.

1.2 Problem Statement

Events are a particular type of outlier related to the evolution of data over
time. We will therefore use the term of outlier for anomalies in static data,
and event in dynamic data. To give a general understanding of the challenges
addressed in this thesis, we �rst introduce the problem of outlier detection ,
then we narrow the scope to event detection. We will discuss the methods
and issues speci�c to event detection from a visualization perspective in
Section 3.1 and from a statistical perspective in Section 4.1 respectively.

Outlier detection aims at �nding data points very di�erent from the oth-
ers in a dataset. This �eld has received a large attention in the last decades
because outliers often represent critical information about an abnormal be-
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havior of the system described by the data. Outliers are also called: novelty,
anomaly, noise, deviation, exception, or event (in a dynamic context) [HA04].
Outlier detection is a critical task in many domains. It helps for instance
detect intrusions in computer networks, identify research fronts in scienti�c
literature and patents, diagnose a fault while monitoring a critical system and
�x it in real-time, evaluate the performance of a computer network, and detect
auction or credit card frauds.

The diversity of applications has led to the introduction of various tech-
niques for outlier detection [CBK09]. Research areas such as statistics, data
mining, information theory and process control theory have produced diverse
methods for spotting outliers in stochastic processes. More recently, anomaly
detection is also addressed in networks like the Internet [GBBK11].

Existing methods may be divided into two categories: univariate meth-
ods (i.e. considering one variable), proposed in earlier works in statistics,
and multivariate methods (i.e. considering multiple variables) which form the
main part of the current body of research. We also distinguish parametric
and non-parametric (model-free) procedures [Bg05]. Parametric procedures
assume the values to be identically and independently distributed following a
known probability distribution (generally a normal distribution), or at least
a statistical estimate of the distribution parameters to �t the data. These
methods �ag as outliers the values that deviate from the model assumptions.
They are often unsuitable for datasets without prior knowledge of the under-
lying distribution [PKGF03] because the hypotheses (e.g. the independence of
observed values) are not satis�ed. Statistical models are not reliable for real
data and are hard to validate since many datasets do not �t one particular
model.

Non-parametric procedures do not assume any knowledge of the data dis-
tribution, and thus learn to detect outliers. In some cases (supervised learn-
ing) labelled datasets are available, from which the program builds a model
of normal behavior (and sometimes also a model of an outlying behavior).
Otherwise (unsupervised learning), the procedure builds a probabilistic model
of the dataset, and updates this model as new points appear. Non-parametric
procedures classify as outliers the data points that deviate signi�cantly from
the model. These approaches are based on histogram analysis, kernel density,
distance measures or clustering analysis. In the �rst (widely used) technique,
the model estimation requires counting the frequency of occurrence of data
points, thus inferring their probability.

The output of an outlier detector is a score of �outlierness� assigned to each
data point, which represents its probability to be an outlier, or its distance
from normal points. Data points are ultimately classi�ed as outliers when
their score is above a given threshold which is a parameter of the method.

Most of these problems and techniques are beyond the scope of our re-
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search but they provide a general view of the diversity of existing approaches,
as a result of the versatility of outlier de�nitions. Events are also an am-
biguous notion and one may consider as event any outlier related to
the temporal evolution of data. We see in Figure 1.2 that events can be
found in many contexts. The classi�cation shown in this �gure and extracted
from a survey published in 2013 is however incomplete: link stream analysis
is missing. In this thesis we focus on event detection in link streams, but as
little has been done so far on this topic we may look at related work in static
and dynamic networks in general. We de�ne our research question as follows:

�How to explore link streams to identify signi�cant events,
with no prior knowledge on the underlying complex sys-
tems under study?�

Our approach is exploratory : we know little about the studied system and
we do not rely on a priori hypotheses to perform the analysis. We thus have
to detect statistically signi�cant events in the evolution of a network
without relying on a priori models of the dynamics. By considering
regular changes in the network, due to the appearance and disappearance of
nodes and links at every moment, an event can be de�ned in relation to the
normal dynamics of the network under study. This question depends directly
on the characterization of what constitutes normal dynamics for the network.
Such exploratory study requires multiples steps from data processing to event
interpretation. In this thesis we propose a �exible methodology thanks to an
appropriate exploratory framework.

1.3 Exploratory Framework

Exploratory approaches rely on a series of non-linear processes that eventually
lead to new insights on data. These approaches usually comprise data acqui-
sition, storage, mining, visualization systems, and communication of �ndings,
wrapped up into an exploratory framework. The methodology we propose in
this thesis to detect and validate events in link streams implies the creation
of such an exploratory framework. We introduce its principles in this Section.

1.3.1 Exploratory Data Analysis

One of the biggest challenges encountered in network analysis is to get a good
intuition of the network under study. Even when information like meta-data
(e.g. age and gender in a social network) is available, extracting valuable
knowledge and providing insights is challenging. Analysts may indeed deal
with multiple dimensions such as social, topical, geographical, and temporal
data, which may also be aggregated at di�erent levels of detail.
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Figure 1.2: Classi�cation of outlier detection approaches in temporal
data [GGAH13]. This survey is recent (2013) but link stream analysis is
missing.
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Figure 1.3: Steps of a processing chain [Fry04].

Faced with such diversity of data and the potentially unlimited number of
analysis to perform at the �rst steps of a new project, analysts usually follow
an exploratory approach to inspect data and outline interesting perspectives
before drilling down to speci�c issues. When the datasets describe complex
networks, this process is called Exploratory Network Analysis (ena); it
is based on data visualization and manipulation to analyze complex networks.
This framework takes its roots in the more general framework of Exploratory
Data Analysis (eda), which consists in performing a preliminary analysis
guided by visualization before proposing a model or doing a statistical anal-
ysis. Described by J. Tukey in 1962 [Tuk62], the philosophy of eda can be
summarized as follows:

�Far better an approximate answer to the right question, which is
often vague, than an exact answer to the wrong question, which
can always be made precise.�

The main goal of eda is to speed up the formulation of novel questions and
relevant hypotheses on data [HSS+97,DHLZ13,RL05] through serendipitous
�ndings (i.e. discoveries made while not necessarily looking for something in
particular) and abductive reasoning2. eda's process relies on visualization
and interaction techniques embedded in a broader process, which includes
data cleaning, storage, and mining. Related goals include error checking in
data input, result validation, and faster �nding of the facts we intuit.

1.3.2 Non-Linear Processing Chain

The process involved from data collection to information discovery requires
a complete tool chain to acquire and parse data, �lter, mine, then represent
it and �nally re�ne the visualizations interactively [Fry04], as illustrated in
Figure 1.3. Nowadays, companies and research laboratories have access to a

2Coined by CP.P. Peirce [Pei74], abduction is �a reasoning process invoked to explain a
puzzling observation.� [AL97]
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Figure 1.4: Illustration of a non-linear processing chain [Fry04].

large choice of methods and corresponding tools for each step. However their
combination remains problematic because such variety makes the selection of
the appropriate one di�cult. Analysts must also learn how to use each new
method properly, verify how to transfer data and intermediate results from
one tool to another, check the integrity of the deployed processing chain to
assess the validity of results, and eventually use the processing chain.

Moreover, this process is usually not static but dynamic: one rarely knows
in advance which methods are relevant for the data under study. The freedom
of disorderly processes was advocated by D. Engelbart in 1962 [Eng01]:

�When the course of action must respond to new comprehension,
new insights and new intuitive �ashes of possible explanations or
solutions, it will not be an orderly process.�

Hence the process implies much trials and errors using various methods
before discovering new information. As new questions and knowledge emerge
during this process, each step must be modi�able at any time. Visualization
may indeed reveal the need to acquire more data, or �lter it in another way;
interacting with it may require to change visual variables and aesthetics. Com-
puting basic statistics and proceeding to an early visual exploration of data
before performing more speci�c analysis can thus provide relevant hypotheses
to start with. The interaction may also highlight new statistical patterns,
hence requiring new visual re�nements. This problem is clearly summarized
by B. Fry on Figure 1.4. The validity of processing chains are questionable as
we see in the following Section.

1.3.3 Epistemological Perspective

How can the data processing chain generate valid information on the objects
of study? With the multiple steps involved from �raw� data (which are al-
ready constructed from such objects) to �nal representations, it is surprising
that analysts' discourse on objects of study can still be related to the objects
themselves. An important theory to solve this epistemological problem was
coined in [Lat95] with the �chains of circulating reference�. By observing how
scientists transform the soil of Boa Vista forest into scienti�c facts, B. Latour
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Figure 1.5: Circulating reference in a common processing chain of complex
networks data. Data source may be the studied object, or may be an interme-
diary between the object and raw data. At some point data must be encoded
in a network format (either in a �le or a database) to be studied as such,
and augmented with data mining results or third-party data. The schema is
revamped from the more general one in [Lat95].

has remarked that scienti�c studies follow a series of transformations, each
one going from matter to forms by creating a gap: forms lose material proper-
ties, but gain semiotic properties related to that matter. In this perspective,
reference is a property of transformation chains which depends on the quality
of transformations. Such chains can conduct truth (like copper wire conducts
electricity) only if they remain reversible, i.e. changes can be traced back
and forth so that valid reference circulates along chains without interruption.
The circulating reference was originally illustrated by Latour. We revamp
his schema on Figure 1.5, in an attempt to apply it to the processing chain
of complex network data. We see in the next Section how augmented data
(which is part of this chain) generated by data mining algorithms may speed
up visual analysis.

1.3.4 Reaping Bene�ts from Data Mining Algorithms

Complementary data are indeed sometimes required to quickly perform visual
analytic tasks, such as identifying the shortest path between two nodes. A
solution to this problem is to augment data with the results of data mining
algorithms, then to integrate them into visualizations.

For instance, consider the identi�cation of all communities of the net-
work, i.e. the groups of nodes with dense connections within groups and
sparser connections between groups. The Louvain community detection al-
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Figure 1.6: Sample of network visualization where node colors correspond to
their community (computed with the Louvain algorithm with resolution=1).

gorithm [BGLL08] may be used to �nd one partition of the graph which
maximizes a given quality function (modularity) of the community structure.
Because this algorithm detects non-overlapping communities, each node is as-
signed to exactly one community. Analysts can color nodes according to their
community, as illustrated in Figure 1.6.

In another example, we consider the identi�cation of the most central links,
where a central link is de�ned as a link traversed by the greatest number of
shortest paths. One may compute all shortest paths using the algorithm
of [Bra08] and map the results to lines thickness in the node-link diagram.

In a last example, consider the detection of someone's �in�uential social
circles� (where the in�uence is let to be de�ned by the analyst) in a social net-
work. A possible method consists in �ltering [AS94] the network to highlight
the nodes surrounding a selected node. But too many nodes are displayed if
the node (or its direct neighbors) has a high number of connections. A solu-
tion is to de�ne a function usually called �degree of interest� [Fur86], which
computes a score indicating to what extent each node is related to the se-
lected node, then to prune the visualization by keeping only the nodes with
high scores. This method has been used in [vHP09] in another context.

Data mining algorithms may also be executed by interacting with the
representation, like computing the shortest path after having selected the path
endpoints. Integrating these algorithms into the visualization and making
them available at any time of the exploration is thus a solution to include
them in the non-linear processing chain.

In this Section we have introduced the principles of exploratory frameworks
to generate new insights. In this thesis we de�ne a speci�c framework in order
to detect, validate and interpret events in link streams.
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1.4 Contributions & Organization of the Manuscript

The work conducted during this thesis contributes to the investigation of
events in link streams in many aspects:

1) De�nitions: as link streams have not been thoroughly studied before to
our knowledge, we propose a rigorous de�nition of link streams and de�ne
the notions related to the study of their dynamics, in particular the concept
of statistically signi�cant event.

2) Visual approaches: we �rst experiment two approaches for event detec-
tion based on visualization. In the continuity of the large majority of methods
that display an overview before focusing on particular data points, we propose
an augmented timeline (implemented in Gephi software3) which integrates
the chart of a time series statistic in a dynamic graph (e.g. the evolution of the
number of nodes). This technique helps users select a sub-graph correspond-
ing to an event observed on the chart, but it remains limited by the graph
size. Then we propose an approach based on the incremental exploration
of a graph, that allows experts to reveal points of interest in static graphs.
This experiment encourages further studies of local approaches to visual ex-
ploration, which nonetheless have to be preceded by an automatic detection
of abnormal time periods (i.e. events) in graph evolution.

3) Automatic event detection: most current methods of event detection
need a priori knowledge on the observed system, but we would like to detect
events with no prior information on it. We thus propose a novel method, called
Outskewer , which allows to detect statistically signi�cant anomalies both in
samples and time series, with no parameter but the size of the sliding window
on time series (which is a required parameter for multi-scale analysis). When
applied to link streams, this method enable us to characterize their dynamics
by distinguishing a regular dynamics (i.e. when nodes and links appear and
disappear regularly over time) from abnormal dynamics. It can eventually be
applied in an on-line fashion. The algorithm is available in open source, coded
in R4.

4) Concept of time adapted to link streams: while studying the data
of github online social network, we observe that the time series of graph
statistic present day-night and weekly patterns due to the users activity. This
phenomenon prevents us to observe the network's own dynamics and to detect
related events. We then introduce the concept of intrinsic time , which
provides new time units based on the appearance of links in the stream. This
operation enables us to generalize the use of Outskewer to the precise
observation of link stream dynamics. It especially allows detecting events

3Presented in Section 3.1.5.3
4http://sheymann.github.io/outskewer/

http://sheymann.github.io/outskewer/
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unseen before. However its impact on event detection is not trivial, and we
study it using various parameters (like the size of the sliding time window).

5) Visual methodology of event validation: the previously detected
events must be interpretable in order to be con�rmed. We hence propose
a visual investigative method on the sub-graphs that correspond to these
events; it dramatically reduces the number of displayed items on screen. If
abnormal patterns exist in the node-link diagram, and if they only appear at
this particular moment, then we can reasonably interpret the events as cor-
related to these patterns, and use the associated meta-data to postulate an
explanation. We successfully apply our methodology to the github dataset.

6) Exploratory framework: in the age of data intensive science, scien-
ti�c contributions may have a scope not just covering one or two links in the
data processing chain, but actually think through the integration in the whole
chain [Tuk80]. This is not trivial as the di�erent steps and their integration
draw from di�erent skill sets, usually cultivated in di�erent academic disci-
plines. Our complete methodology combines automatic event detection with
visual validation. We thereby propose an exploratory framework for link

stream analysis which may be speci�ed with regards to speci�c use cases,
both in terms of the statistic used for event detection and of the kinds of event
being validated. It is even possible to make this process entirely automatic
once the events are characterized.

This manuscript is organized as follows. In the following Chapter we pro-
vide the de�nitions related to link streams, and present the datasets that will
be used throughout the thesis. The four following chapters then detail the
contributions mentioned above. In Chapter 3 we provide a state of the art on
network visualization, then we study visual approaches for outlier detection
in static networks, and event detection in dynamic networks. In Chapter 4
we propose Outskewer, an automatic method for outlier and event detection
using the skewness of distribution of values, and we validate it experimentally
on both synthetic and real-world data. In Chapter 5 we generalize the use of
Outskewer on link streams by introducing the concept of intrinsic time. In
Chapter 6 we illustrate our uni�ed framework for automatic event detection
and visual investigation. We apply it to the real-world dataset of the online
social network github.
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2.1 De�nitions

A unifying formalism for time-ordered networks exists [KKK00]: it associates
a departure time and an arrival time to each link, and model each link e =
(u, v) of the original graph by constructing two undirected links e− = (u,we)
and e+ = (we, v), where we is a new node. This formalism allows computing
time-respecting paths, however it implies unnecessary complications for link
streams, and the time order of links is not explicit. It is thus di�cult to express
notions related to link streams with it. The formalism of data streams seems
more suitable to link streams [AF07]: �a data stream is a possible in�nite series
of objects ..., objt−2, objt−1, objt, ..., where objt denotes the object observed at
time t.� We thus specify it to link streams, and provide related de�nitions:

De�nition 1 Link stream: let F = {f0, f1, ..., fm} be the ordered multiset
of triples fi =< nx, ny, ti >, with the order relation fi ≤ fi+1 if and only if
ti ≤ tt+1, where i ∈ N, ti ∈ R. We call F a link stream. Each triple denotes a
link between two nodes nx, ny observed at the date ti and at the position i in
F .

De�nition 2 Link stream graph: let G = (V, F ) be the graph correspond-
ing to such a link stream, with V = {n0, ..nn} and F ⊆ V × V × T where
T = {t0, ...tm}.
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Figure 2.1: Illustration of a sliding time window (of size w) on a link stream.
A sub-graph Gi

w is associated to each position i of the window.

We note that G has n nodes and m links. It is a dynamic graph because
each link fi has a time of appearance ti.

De�nition 3 Link stream sub-graph: Gi
w = (V i

w, F
i
w) is the corresponding

sub-graph of the multiset of w triples F i
w = {fi−w+1, ..., fi}.

We note that sub-graphs have w links, see Figure 2.1.

De�nition 4 Statistic on a link stream sub-graph: let Siw be a statistic
of Gi,∀i ∈ [w− 1,m] and i ∈ N. The time series Sw = {Sw−1, ..., Sm} thereby
represents the evolution of Siw over time, computed on each sub-graph of F
with a sliding time window of size w.

De�nition 5 Outlier: there is no formal de�nition of outliers because this
intuitive notion varies with the context and the expected properties of out-
liers. From a statistical perspective, Grubbs [Gru69] states that �an outlying
observation, or outlier, is one that deviates markedly from other members of
the sample in which it occurs". Hawkins [Haw80] de�nes an outlier as �an
observation which deviates so much from other observations as to arouse sus-
picions that it was generated by a di�erent mechanism", while Barnett and
Lewis [BL94] call an outlier �an observation (or subset of observations) which
appears to be inconsistent with the remainder of that set of data�.

De�nition 6 Event: consecutive set of values {xi, xi+1, ..., xj}, i + 1 ≤ j
classi�ed as outlier in a time series X = {x0, x1, ..., xn}.

For convenience, we refer to the events using their position i in X.

We now extend our de�nitions to the important notion of bipartite graph .
Interaction systems may indeed be represented as bipartite graphs when in-
teractions occur between two types of nodes. Also called two-mode networks,
bipartite graphs are made of nodes (i.e. elements) which belong to two sets
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Figure 2.2: Example of user-services interactions.

Figure 2.3: Example of bipartite graph (center), together with its>-projection
(left) and its ⊥-projection (right).

usually called top and bottom, and in which links exist only between nodes
of di�erent sets. Applications in computer science include client-server archi-
tectures where machines connected as clients make use of resources provided
by machined connected as servers, and �le-provider graphs where each �le is
connected to the individuals providing it, e.g. in peer-to-peer architectures.
The invocations of various services of an information system by a set of users
typically correspond to such a bipartite graph, as illustrated in Figure 2.2.

De�nition 7 Bipartite graph: let G = (>,⊥, E) a triplet where > is the
set of top nodes, ⊥ is the set of bottom nodes, and E ⊆ > × ⊥ is the set of
links.

Bipartite graphs do not form a particular type of networks as one could
think. On the contrary, all complex networks have an underlying bipartite
structure [GL04]. Graphs which do not display a bipartite structure are indeed
projections of bipartite graphs. Projecting bipartite graphs on the set of top or
bottom nodes is a classical approach for studying such graphs, despite several
drawbacks [LMDV08]. For instance, one can build the graph of clients which
is a projection of the bipartite client-server graph, where two clients are linked
together if they use the same server.

De�nition 8 Projection of bipartite graphs: as de�ned in [LMDV08],
the ⊥-projection of G is the graph G⊥ = (⊥, E⊥) in which two nodes of ⊥
are linked together if they have at least one neighbor in common in G: E⊥ =
{(u, v),∃x ∈ > : (u, x) ∈ E and (v, x) ∈ E}. The >-projection G> is de�ned
dually, as shown in Figure 2.3.

We also describe the notion of internal links that we will use in Sec-
tion 5.3. The intrinsic bipartite notion of internal links has been introduced
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G’  = GT T

Figure 2.4: Example of ⊥-internal link. Left to right: a bipartite graph G,
the bipartite graph G′ obtained by removing link (B, j) from G, and the
⊥-projection of them. As G′⊥ = G⊥, (B, j) is a ⊥-internal link of G.

recently and studied for static networks [ATML12] to bring novel insights on
the characterization of these networks. An internal link is such that its re-
moval does not change the projection of the graph for a given set of nodes,
either top or bottom. In the example of an information system of users (i.e. top
nodes) interacting with services (i.e. bottom nodes), an internal link from the
top (resp. bottom) point of view is a link which is not mandatory to connect
two users (resp. services) in the corresponding projection. One can interpret
internal links as a measure of links redundancy.

De�nition 9 Internal link: >-internal (resp. ⊥-internal) links are links
which may be removed from E without altering the >-projection (resp. ⊥-
projection), as shown in Figure 2.4. Let (u, v) ∈ ⊥ × > with (u, v) ∈ E and
let G′ = G − (u, v), (u, v) is a ⊥-internal link if and only if G⊥ = G′⊥ where
G′⊥ is the ⊥-projection of G′. >-internal links are de�ned dually.

We naturally extend the de�nitions of link stream and link stream graph
as follows:

De�nition 10 Bipartite link stream: let E = {e0, e1, ..., em} be the ordered
multiset of triples ei =< n>, n⊥, ti >, with the order relation ei ≤ ei+1 if and
only if ti ≤ tt+1, where i ∈ N, ti ∈ R. We call E a bipartite link stream. Each
triple denotes a link between two nodes n>, n⊥ observed at the date ti and at
the position i in E, where n> ∈ > and n⊥ ∈ ⊥.

De�nition 11 Link stream bipartite graph: let B = (>,⊥, E) be the
bipartite graph corresponding to such a link stream, where > is the set of top
nodes, ⊥ is the set of bottom nodes, and E ⊆ >×⊥×T where T = {t0, ...tm}.

The de�nitions of link stream sub-graph and associated statistics can be
extended in a similar way.
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Figure 2.5: Number of inhabitants per year in France during the 20th century.

2.2 Datasets

We have used various datasets to test each step of our methodology. The
experiments related to visualization have been conducted in the context of
various research projects. The visualization experiments are conducted with
the Twitter network of COFA Online and the dataset of Mapping the Re-
public of Letters project. The automatic detection of outliers in samples and
time series (Chapter 4) has required the use of three di�erent datasets: the
evolution of the French population size in the 20th century, Radar of Internet,
and search queries from the eDonkey P2P network. The link streams cover a
wide range of volume, from a hundred links to hundreds of millions. We have
�nally performed an extensive study on one dataset (github online social
network), combining all the techniques developed during our research into a
uni�ed methodology. This is not the largest dataset in terms of number of
links, but the most appropriate thanks to the richness of its meta-data and
the live system (Github.com) from which the dataset was extracted.

2.2.1 French Population Size in the 20th Century

This dataset is a time series of the evolution of the French population during
the 20th century1, see Figure 2.5. It is the estimation of the population size
for each year, from 1900 to 2010. The dataset contains 111 data points.
Experiments conducted on this dataset are described in Section 4.2.4.1.

2.2.2 Republic of Letters

This dataset is a static network of 60,000 letters and relationships among
philosophers during the Enlightenment. The Mapping the Republic of Letters
initiative (MRofL)2 is a digital humanities project based at Stanford Univer-
sity exploring intellectual exchange in the early modern period through the
analysis of correspondence, travel and intellectual network data. Bringing to-
gether an international network of scholars, researchers, graduate students,
collaborators, and partners through several research and learning initiatives,

1https://fr.wikipedia.org/wiki/Histoire_d%C3%A9mographique_de_la_France
2http://republicofletters.stanford.edu

https://fr.wikipedia.org/wiki/Histoire_d%C3%A9mographique_de_la_France
http://republicofletters.stanford.edu
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Figure 2.6: Radar measurements are iterated from a monitor to a set of des-
tinations [HLM10].

the project is a collection of case studies in history and literary studies that
makes use of information visualization to examine the scope and the dimen-
sion of heterogeneous datasets. In the last four years, the MRofL research
group has engaged with several research labs and organizations from the de-
sign and computer science communities, in order to better understand roles,
opportunities and synergies between these �elds, in the development of digital
humanities tools.

The data coming from MRofL, as from many other humanities projects,
present a high level of uncertainty and incompleteness for a number of reasons,
such as the nature of the data itself (roughly 60,000 letters from the 17th

century using various sources), the process of acquisition and digitization (e.g.
letters are handwritten making it di�cult, if not impossible, to recognize and
process the content) and the heterogeneity of di�erent sources (e.g. each data
collection provides di�erent content and metadata). Experiments conducted
on this dataset are described in Section 3.2.2.

2.2.3 Radar of Internet

This dataset is a series of 4993 graph snapshots, with 10,000 nodes per snap-
shot on average. It was collected with a method called the Radar of Inter-
net [LMO11], which observes the dynamics of the internet's topology at the
scale of a few minutes. It consists in focusing on the part of the internet's
topology viewed from a single computer called the monitor, when IP packets
are sent using the tracetree tool to a set of random targets. Periodical mea-
surements of this map, called ego-centered view, have been performed every 15
minutes during several months, leading to a series of graphs, see Figure 2.6.
The obtained map is obtained by merging all the links discovered between two
machines during a round of measurement.

The dataset hence consists in a series of 4993 static graphs captured from
a monitor of the PlanetLab project3 in Japan. The dataset is freely available4.
Experiments conducted on this dataset are described in Section 4.2.4.2.

3http://www.planet-lab.org/
4http://data.complexnetworks.fr/Radar/

http://www.planet-lab.org/
http://data.complexnetworks.fr/Radar/
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2.2.4 Twitter network of COFA Online

This dataset is a stream of 123 links. COFA Online Gateway5 is an Australian
platform for teaching e-learning methods and techniques. The tweets talking
about it have been manually collected using the Twitter Timeline and search
engine from October 26, 2011 to January 11, 2012, and 508 users have been
geolocated manually. We have built the network of these users, in which a
link exists when a user mentions another user in a tweet during this period
by either �retweeting� a message or mentioning another user without Twitter
built-in features (e.g. when missing '' at the beginning of a user name). Users
appear the �rst time they tweet about COFA Online, or the �rst time they
are mentioned. This network can be modeled as a link stream, as we observe
appearing links at each interaction between Twitter users talking about COFA
Online. The dataset is available on demand. Experiments conducted on this
dataset are described in Section 3.2.1.

2.2.5 Github Online Social Network

This dataset is a stream of 2.2 million links. Github.com is an online platform
created in 2008 to help developers share open source code and collaborate.
Built on the Git decentralized versioning system, it facilitates contributions
and discussions by providing a Web interface (see Figure 2.7). Github reached
3 million users on January 16, 2013, who collaborate on 5 million source code
repositories. Our dataset describes the complete activity between users and
repositories on the platform from March 11, 2012 to July 18, 2012. We have
extracted the data from the Github Archive6, which is a record of every public
event on Github. Then we have built the graph of �who contributes to which
repository�, where nodes represent users and repositories, and where links
represent any kind of activity users have on repositories.

Github data is modeled as a bipartite graph of link stream G = (>,⊥, E)
where > nodes represent users, ⊥ nodes represent repositories, and E ⊆ >×
⊥×T , where T is a set of time-stamped values, represents an activity between
a user and a repository7.

The considered activities are the following: commit and push source code,
open and close issues for bug reports, comment on issues, commits or pull
request (i.e. asking for a patch to be merged), create or delete branches
and tags, and edit the repository wiki. We ignore the other activities: fork
(i.e. repository duplication), mark repositories as favorite, and follow of the
timeline of another user or repository. There are slightly more than 336 000
nodes and 2.2 million links in the graph.

5http://online.cofa.unsw.edu.au/
6http://www.githubarchive.org
7De�nitions related to bipartite graphs may be found in Section 2.1

http://online.cofa.unsw.edu.au/
http://www.githubarchive.org
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Figure 2.7: Screenshot from Github.com showing a history of contributions
to the source code of a project.

We have collected all data necessary to monitor the evolution of the graph,
as we have stored all nodes and links over time. Each link is associated with
a timestamp indicating the moment when it has been observed. The data
is thus a stream of observed links, ordered by their timestamp. A node is
considered to appear in the graph when it is attached to an observed link for
the �rst time. However there is no information in the data about the duration
of nodes and links existence. A node may indeed be observed only once even
if it exists during a long period. It means that we do not observe the nodes
which appeared before the beginning of the measurement and for which no link
is observed during the measurement, i.e. who do not contribute or for which
there is no activity during the studied period. We thus miss the registered
users who are not active in the social network during the measurement, and we
also miss the existing repositories on which there is no activity. Experiments
conducted on this dataset are described in Sections 5.2, 5.3, and 6.3.

2.2.6 eDonkey P2P Network

This dataset is a stream of 205 millions links. It consists in search queries
captured from a eDonkey server for 28 weeks in 2009 [LMF]. The dataset
contains textual queries made by users for lists of �les matching certain key-
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words. The dataset contains 205,228,820 queries entered from 24,413,195 IP
addresses. Samples and procedure descriptions are publicly available8.

The data is stored as a link stream: a link exists when a user requests a �le
from a P2P server. A timestamp is associated to each link, and the links are
ordered by timestamp. Experiments conducted on this dataset are described
in Section 4.2.4.3.

We have �nished to introduce the de�nitions and datasets used in our
thesis. We propose in the following Chapter our experiments in visualization
for outlier and event detection.

8http://antipaedo.lip6.fr/

http://antipaedo.lip6.fr/
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Visualization is an intuitive solution to explore networks but is far from
trivial. In this Chapter we distinguish the global approach, which is so far
the most common, to the local approach which has received a more recent
attention. These two approaches combine di�erent interactions techniques.
We have experimented them for outlier detection in static networks, and for
event detection in temporal networks. The knowledge gained from these ex-
periments has provided ground to the rest of our research.

We review the state of the art in Section 3.1 and describe our experiments
in Section 3.2, to conclude in Section 3.3.

3.1 Related Work

In this Section we review existing visualization methods for outlier detection in
networks, and for event detection in dynamic networks. We also distinguish
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the global approach, in which the complete network is displayed, and the
local approach, where only a sub-graph is displayed and possibly modi�ed
interactively.

Information visualization has been used to support social network anal-
ysis since the 1930s with the �sociogram� of J. Moreno [Mor37], which is a
graphic representation of social ties among a group of people. Despite the
early beginning of network visuals, we had to wait until the 1990s and the
democratization of computer graphics to see the development of interactive
visualization software, which has made the interactive exploration of complex
networks possible. Pajek [BM98] is the most noticeable tool, as it provides
both statistical algorithms and visual representations of social networks. Its
methodological book entitled �Exploratory Social Network Analysis with Pa-
jek� was published in 2005.

The contribution of Information Visualization to science is stated by J-D.
Fekete [FVWSN08]:

�Information Visualization is meant at generating new insights and
ideas that are the seeds of theories by using human perception as
a very fast �lter: if vision perceives some pattern, there might
be a pattern in the data that reveals a structure. [. . . ] There-
fore, it plays a special role in the sciences as an insight generating
method.�

More generally, Information Visualization is a way to reveal data proper-
ties which would not be trivially detected otherwise, to shed light on break-
throughs, and to share the poignant experience of �Aha, I see!� [Few06] thanks
to its intuitive aspect. This research �eld contributes to the emergence of
novel scienti�c theories by improving the exploitation of human cognition.
According to Card, Mackinlay and Shneiderman [CMS99], the main focus of
visualization is indeed to amplify cognition. The authors listed a number of
key ways to do so, showing the advantages of using visualization techniques
during data exploration:

• Reducing time spent looking for information,

• Enhancing the recognition of patterns,

• Enabling perceptual inference operations,

• Using perceptual attention mechanisms for monitoring tasks,

• Encoding information in an actionable medium.
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Figure 3.1: Example of guidelines for mapping data variables to visual vari-
ables [STH02].

3.1.1 Perceptual Support of Visualization

Information Visualization relies on the properties and perception abilities of
the human visual system. According to Information Theory, vision is the
sense that has the largest bandwidth (100 Mbits/s), which makes it the best
suited canal to convey information to the brain (in contrast, audition has
only around 100 bits/s) [War00]. Visualization hence requires building and
applying a visual language to encode information that can be read and inter-
preted correctly. This operation is called a mapping between data variables
and visual variables. This language relies on visual features like geometric
primitives, colors and sizes, and was theorized in [BB67,CM84], and extended
in [Mac86]. However selecting visual features to convey information is not triv-
ial. One would indeed like to select the most e�ective ones, but while avoiding
misunderstandings and over-interpretations. Well-established guidelines dis-
tinct two kinds of data variables: quantitative and qualitative variables (see
Figure 3.1). Visual features can be selected according to the type of data, but
di�culties remain when mixing di�erent visual variables in the same image.

Two main psychological theories explain how vision can be used e�ciently
to perceive features and shapes, according to [War00]: the preattentive pro-
cessing theory, and the Gestalt theory.

Some visual features are particularly e�cient as demonstrated in [Tre85,
HBE95], an e�ect called preattentive processing. Visual saliences (i.e. ele-
ments and patterns which perceptually stand out from the remainder of the
picture and grab the attention of the observer [IK01]) can be perceived very
quickly (in an order of less than 250 milliseconds) and can be recognized "at a
glance" without any cognitive e�ort, even if it has been found that the atten-
tion level plays a critical role. An example is illustrated in Figure 3.2, where
we spot the red letters among several dark letters (left image), as well as we
spot the T among lines very quickly (right image). But mixing colors and
shapes forces us to pay a speci�c attention to each item, see Figure 3.3.
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Figure 3.2: Illustration of the impact of preattentive processing on the de-
tection of outlying elements [Won10]. (a) Certain elements can be seen in
a single glance, whereas others are di�cult to �nd. (b) Examples of visual
features that make objects distinct.

Figure 3.3: Illustration of the impact of mixing visual features on the preat-
tentive processing e�ect [Won10]: (a) Simultaneous use of many graphical
features can impede visual assembly of the data. (b) Multiple views of the
same data with limited parameters plotted can better communicate speci�c
relationships.
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The Gestalt theory, established in [Kof35], explains the main principles
that lead to images interpretation. [War00] summarizes them as follows:

• �Proximity: Things that are close together are perceptually grouped
together;

• Similarity: Similar elements tend to be grouped together;

• Continuity: Visual elements that are smoothly connected or continu-
ous tend to be grouped;

• Symmetry: Two symmetrically arranged visual elements are more
likely to be perceived as a whole;

• Closure: A closed contour tends to be seen as an object;

• Relative Size: Smaller components of a pattern tend to be perceived
as objects whereas large ones as a background.�

We illustrate them in Table 3.1.

Table 3.1: Interactions among structures, from the Gestalt theory.

Laws of Grouping Structure Perception Illustration

Proximity 2 close components 1 single component

Similarity Similar components Grouped components

Closure Close boundaries Uni�ed boundaries

Continuity Neighboring items Grouped items

Symmetry Symmetrical items Global item

3.1.2 Emergence of Knowledge through Visualization

The goal of Exploratory Data Analysis is to �nd the best hypothesis which
supports the observation of data. The knowledge discovery process is thus
considered to be abductive, i.e. given an observation, our explanation has a
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Figure 3.4: Distribution of �le sizes in a P2P �le exchange system, with the
number of �les as a function of �le size [From Complexnetworks.fr ].

reasonably good chance to be right according to our current results, knowl-
edge, and intuition, but there might be an unknown number of explanations
that can be at least as good as this one. Further studies through visualization
and statistical analysis are then necessary to try disproving our explanation in
favor of a better one. The explanation may �nally be accepted after a couple
of experiments that fail at invalidating it. The insights gained may be used to
con�rm already known results, as well as providing ideas of novel statistical
indicators and data descriptors in general.

The data properties spotted by visual saliences may challenge current hy-
potheses and raise new questions. The analyst may want to modify the vi-
sualization accordingly, to eventually select a picture which clearly reveals an
issue, or which supports a hypothesis. The key role of visualization in the
emergence of knowledge is emphasized by J. Tukey [Tuk77]:

�The greatest value of a picture is when it forces us to notice what
we never expected to see.�

We illustrate it on a simple example: in the distribution of �le sizes in a
P2P system (see Figure 3.4), we observe clear peaks on speci�c values, and we
know that these values correspond to the most common sizes of �lms, depend-
ing on their formats. There values are thus interesting outliers, not anomalies
in data. The authors of the study raise then the following hypothesis:

�Even though in principle �les exchanged in P2P systems may
have any size, their actual sizes are strongly related to the space
capacity of classical exchange and storage supports.�



3.1. Related Work 33

Figure 3.5: (a) Nodes are ordered as rows and columns; connections are in-
dicated as �lled cells. (b) A matrix representation of data from Figure 3.6
(b) [GW12].

The visual investigation of this P2P dataset helped the authors of the study
to make a discovery, which however has to be con�rmed by complementary
analyses.

3.1.3 Visual Representation of Networks

What makes complex network data particular is the key importance of rela-
tionships. Observing and navigating in this context calls for the development
of suitable visualization and interaction techniques in conjunction with stor-
age and data mining solutions. Complex networks have therefore received
a large attention from Information Visualization researchers, which has led
to multiple methods and techniques for their representation and exploration.
Usually, representations of networks are projections of the topology on two or
three dimensional spaces using algorithms that calculate nodes coordinates.
These algorithms are called layouts. We present here two classical representa-
tions: matrix-based representations, and representations with dots and lines
on which we will more speci�cally focus in this chapter.

3.1.3.1 Matrix-Based Representations

Introduced in [BB67], matrix-based representations rely on the adjacency ma-
trix, i.e. a Boolean matrix whose rows and columns represent the nodes of
the network. For each link between two nodes, the cell at the intersection
of the corresponding row and column contains the value �true�, see Fig. 3.
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Figure 3.6: (a) A directed graph typical of a biological pathway. (b) An
undirected graph with nodes arranged in a circle. (c) A spring-embedded
layout of data from b [GW12].

Otherwise, it is set to �false�. It is possible to replace the Boolean values by
those links' attributes to add more information to the representation.

Matrix-based representations can be �reordered� through successive per-
mutations of its rows and columns to reveal interesting patterns in the network
structure. One of the main advantages of this representation is to avoid oc-
clusion problems encountered using the representation with dots and lines,
which we will see in the next Section. Matrices are e�cient to perform ba-
sic tasks like identifying the most connected node, a link between two nodes,
or a common neighbor of two nodes. However they perform poorly on more
complex tasks such as �nding a path between two nodes, even in small matri-
ces [GFC04]. Such drawbacks may be the reason why they remain underused
compared to representations with dots and lines.

3.1.3.2 Representations with Dots and Lines

These representations rely on �graph drawing�, which is the art and science of
making this type of representation, also known as node-link diagrams, using
layout algorithms. These diagrams represent nodes as dots and links as line
segments (or curves). A signi�cant majority of network visualization software
implement such representations: in 2007 [HFM07] referenced 54 (out of 55)
node-link based systems in the Social Network Analysis Repository , and 49
(out of 52) on the Visual Complexity website .

Force-directed algorithms are the most common layouts. They are usu-
ally described as spring embedders [Kob12] due to the way the forces are
computed: roughly speaking, connected nodes tend to be closer, while discon-
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nected nodes tend to be more distant. More precisely, force-directed layouts
compute repulsive forces between all nodes, but also attractive forces among
linked nodes. Forces are calculated and applied on each node at each layout
iteration to update its position until the algorithm has converged to a stable
position of nodes.

All force-directed algorithms rely on a formula for the attraction force
and one another for the repulsion force. The �spring-electric� layout proposed
in [Ead84], for instance, is a simulation inspired by real life. It uses the repul-
sion formula of electrically charged particles (Fr = k/d2) and the attraction
formula of springs (Fa = −k.d) involving the geometric distance d between
two nodes. The pseudo-code is given as follows:

algorithm SPRING(G:graph):

place vertices of G in random locations

repeat M times:

calculate the force on each vertex

move the vertex c4 * (force on vertex)

draw graph

Fruchterman and Rheingold [FR91] have created an e�cient algorithm
using di�erent forces (attraction Fa = d2/k and repulsion Fr = −k2/d, with
k adjusting the scaling of the network).

Moreover, recent software like Gephi (introduced in Chapter 3) draw the
visualization at each iteration, thus providing real-time feedback to users.
When layouts are implemented with no stopping condition, users can tweak
the layout parameters in real-time until they decide to stop its execution.
Interaction while calculating layout is usually made technically possible by
using multi-threading processing, and by using the gpu for rendering the
visualization. The goal is to avoid the layout algorithm being perceived as a
�black box� by the analyst (although no scienti�c study has been performed
yet to verify this belief), and to accelerate the testing of the layout parameters
to obtain an aesthetically good visualization.

The targeted visualization of force-directed layouts is a rough correspon-
dence between the distances in the projection space and the distances in the
network topology. The goal is to enable a visual interpretation of the topol-
ogy using the spatial positions of nodes. When a �good� layout is applied,
the resulting image hastens the understanding of the network structure by
revealing visual patterns. The readability of graphical representations can be
de�ned by the relative ease with which users �nds the information they are
looking for. Alternative de�nitions include the potential to make sense of the
data, the familiarity to users, and aesthetic criteria; readability is subjective
because the result should be visually appealing and depend on the analysis
task. However, some metrics are available to compare layouts, such as the
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Figure 3.7: Visual patterns in Matrix and Node-link representations of so-
cial networks. A represents an actor connecting several communities, B a
community and C a clique (complete sub-graph) [HFM07].

number of occlusions, the uniformity of link lengths, and the number of link
crossings. A more detailed introduction to this topic can be found in [Tam07].

Other kinds of representation exist, but the readers should be able to
cover most of their needs using matrix-based representations and node-link
diagrams. As choosing a representation may also depend on the analysis task
to perform, [HFM07] provides the following comparison guide, see Table 3.2.
The correspondence between some visual patterns is illustrated in Figure 3.7.

Table 3.2: Pros and cons of matrix and node-link diagrams [HFM07].

Matrix-based representations Node-link diagrams
+ No node overlapping Intuitive
+ No edge crossing Compact
+ Readable for dense graphs More readable for path following
+ Fast navigation
+ Fast manipulation More e�ective for small graphs
+ More readable for some tasks More e�ective for sparse graphs
- Less intuitive Useless without layout
- Use more space Node overlapping
- Weak for path following tasks Edge crossing
- Not readable for dense graphs
- Manipulation requires layout computation

3.1.3.3 A Visual Language of Node-Link Diagrams

The visual language of node-link diagrams helps to observe global patterns of
connectivity (e.g. disconnected groups, structural holes, aggregates of nodes
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called communities, bridges between communities, cores and peripheries), to
spot the presence of unexpected connections and central nodes through visual
saliences, and to study trivial correlations between topology and properties of
nodes and links through visual features like color and size. When information
is added to node-link diagrams, one generally uses at most �ve data variables:
nodes, node labels, links, a qualitative attribute, and a quantitative attribute.
These data variables are usually mapped to visual variables in Table 3.3.

Table 3.3: Usual mapping between data variables and visual variables in node-
link diagrams.

Data variable Visual variable
Node Dot
Node label Text near the corresponding dot
Link Line segments (or curves)
A qualitative attribute Dot colors
A quantitative attribute Dot size

When no qualitative attribute is available, the quantitative attribute can
be mapped to dot color as well. Alternatively, one may encode information
in the dot border (size and color), and in the node label (size and color).
Figure 3.8 is a sample visualization of the network of sales representatives in
a private �rm. The legend is necessary to explain the visual language used,
thus allowing the reading and interpretation of the underlying data.

Despite its wide usage among researchers, node-link diagrams are not sub-
ject to well-established graphical conventions like those found in geographical
maps. One can easily misunderstand them, so the visualization should come
with a cautionary text in the legend, stating that:

• Distances are not absolute but relative to local connections. In conse-
quence, one should not compare two graphical distances.

• The representation may be rotated in every direction so the top, bottom,
left and right positions have no particular meaning.

• Nodes at the center of the picture may not be central at all in the
network.

Geographical conventions may nonetheless in�uence the design of node-
link diagrams. When dealing with multiple data attributes, several authors
(see [BKB05,KB09]) distinguish the visual topology made of dots and lines
to other visual variables. Like for geographical maps, the topology is then
considered as the �base map�, while other variables are added as layers of
information. In such cases, these visualizations are called �network maps�.
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Network of company X sales representatives
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Figure 3.8: Visualization of a network sample representing which sales repre-
sentative recruited which other in a company. Dot size corresponds to sales
volume during the year. Dot color corresponds to the rank in the company.
Private work from Sébastien Heymann, 2013.
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Their comparison is facilitated because node and link coordinates are the
same for all maps. This approach is remarkably used in scientometric studies
(i.e. the study of science as a system), where maps of science represent the
way scienti�c �elds relate to each other though publications and co-authorship
networks.

We have seen that the exploration of complex networks is greatly enhanced
by visualization. However when dealing with large networks of hundred thou-
sands of nodes and links, reading a static picture is di�cult and provides
limited insights due to the density of nodes and links. One may want to focus
on a speci�c sub-graph, or to compare maps colored by di�erent attributes,
or to �lter the network based on particular rules... Such tasks are supported
by interactive features as we see in the next Section.

3.1.4 Interaction

Information Visualization is a research �eld of its own, but is only a part
of a larger process to extract insights from data. A typical data exploration
involves extracting, cleaning and sometimes merging various sources of data,
then exploring data using various techniques, and �nally rendering results
for communication purposes. Visualizing data is embodied in these di�erent
stages:

1. One must look at the raw data to understand how to process it and
to identify obvious errors like character encoding issues and exceptions
such as missing data.

2. It is involved in the exploration process.

3. It can be used to communicate insights through static ��nal� renderings
or dynamic �interactive� systems.

The quantity of information displayed by visual representations is natu-
rally limited by properties of the medium, such as paper size and resolution
of screen devices, i.e. the number of points that can be displayed in the two
dimensions. When neither the size nor the resolution can be increased, a so-
lution to overcome this issue on screen is to interact with the representation
so that one can display information on demand. This approach helps to im-
prove the readability of visualizations by reducing the quantity of displayed
information at a given instant.

A set of interaction techniques using the mouse has become a standard:
node selection on mouse click, node drag-and-drop to move its position, zoom
and pan navigation features with the mouse wheel. These features are shared
by noticeable software for the visual analysis of complex networks (introduced
in Chapter 3), such as Cytoscape, Gephi, SocialAction and Tulip.
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Moreover, advanced interaction techniques can enhance analysis tasks. For
instance, Gephi proposes to follow the shortest path from a node to another
by clicking on the source node and on the target node, then coloring links
along the path. However, interaction techniques are bound to visual represen-
tations and are therefore di�cult to generalize [AAB+12]. New technologies
of Human-Computer Interfaces like multi-touch screen devices provide also
new area of innovation [SNDC10].

Finally, interaction can be used not only to explore a dataset, but also
to command the other steps of the processing chain. For example, one may
�lter the network according to a given query based on the properties of nodes
and links, such as �display the nodes of degree greater than 10� [Ada06]. One
may also acquire new data by interacting with the representation, as it is the
case on visual Web crawlers: crawlers are programs which grab the content of
Web pages by recursively visiting the hyperlinks of given Web pages. One can
encode Web pages as nodes, and hyperlinks as links. The corresponding node-
link diagram represents the Web explored by the crawler. One could then ask
for the crawler to visit the hyperlinks of a Web page by double-clicking on its
corresponding node. The crawler would therefore retrieve the new Web pages
and scan the new hyperlinks available, to update the visualization.

Interaction techniques are therefore essential to explore large networks, to
hasten analysis tasks, and to integrate visualization in the data processing
chain (see Section 1.3).

3.1.5 Global Approach for Network Visualization

The global approach in the study of static networks consists in visualizing the
whole network before possibly focusing on its parts. Such visualizations are
called �synoptic views� or �overviews�, because they allow grasping the general
properties of a complex system by seeing it entirely. For instance, a social
science researcher may want to identify groups of individuals who interact
frequently with one another, while a network architect may want to decompose
network structures according to the paths taken by information going from
one computer to another. This approach allows addressing di�erent categories
of questions such as the characterization of the global network topology, and
the detection of outliers.

3.1.5.1 Guidelines

Most visual analyses studied in [Shn96] follow the same pattern of interaction
with visual representations, which has led to Shneiderman's well-established
mantra of Visual Information Seeking:

�Overview �rst, zoom and �lter, then details-on-demand�
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These terms have been explained as follows:
Overview: get an overview of the entire data, for instance by zooming out
the view.
Zoom: zoom in on items or groups of items of interest by controlling the
zoom focus and the zoom factor. A good practice is to point to a location
and trigger a zoom command.
Filter: �lter out uninteresting items using dynamic queries through textual
or widget-based interfaces (e.g. sliders, checkboxes and other buttons). A
quick execution (less than 100 milliseconds) is desired.
Details-on-demand: get details on a selected item or group of items, usually
by showing a pop-up window on click or by updating information on a sidebar.

This mantra should be considered as a recommendation which describes
how data should be presented on screen [CC05]. It has been followed by nu-
merous researches and implemented in the graphical user interfaces of notable
software (see the tools in the following subsection), however it is surprising
that few studies address the e�ectiveness of overviews (constructed artifacts)
at �overviewing� [HH11], i.e. the ability to raise �qualitative awareness of
one aspect of some data, preferably acquired rapidly and, even better, pre-
attentively: that is, without cognitive e�ort' ' [Spe07]. Overviews are as-
sumed to be an e�ective way to detect outliers in static networks, and events
in dynamic networks because one can spot signi�cantly di�erent elements and
groups among the whole through visual saliencies (see Appendix).

When applied to the study of complex networks, this mantra implies the
creation of representations in 2-d or 3-d space to visualize the whole networks
and interpret the data (see Section 3.1.3). In this perspective, quality rep-
resentations are data projections which allow reading the network topology
aided by a visual language. Grouping elements, �ltering nodes and links, and
using other interaction techniques (see Section 3.1.1) are keys to implement
the mantra's principles.

3.1.5.2 Tools

Since the release of Pajek [BM98], visualization and interaction features of
scienti�c tools have been improved to support the global approach in a uni-
�ed graphical user interface. We introduce the most noticeable ones below
according to the number of times their original publication is cited by other
research articles.

Pajek (1998): 1025 citations of [BM98]. Pajek is a closed source application
which provides fast data mining algorithms for Social Network Analysis and
node-link diagrams.
Cytoscape (2003): 3300 citations of [SMO+03]. Initially focused on visu-
alizing molecular interaction networks, Cytoscape is an open source platform
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Figure 3.9: Visualization using NodeTrix.

suitable for any kind of networks. It combines a rich set of algorithms to
create node-link diagrams with visual styles, �lters and interaction tools. It
is coded in Java and can be extended by plugins.
Tulip (2004): 240 citations of [Aub04]. Tulip is an information visualization
framework dedicated to the analysis and visualization of relational data. The
graphical user interface provides combined views using node-link diagrams
and other kinds of representations like histograms and treemaps to support
advanced analysis. It provides an open source library written in C++ to sup-
port the development of algorithms, visual encodings, interaction techniques,
data models, and domain-speci�c visualizations. Tulip is particularly suitable
for research prototyping of new kinds of visual representations and interaction
techniques.
GUESS (2006): 171 citations of [Ada06]. This open source software enables
the exploratory data analysis and visualization by combining node-link dia-
grams and a textual query language to edit data, �lter networks and re�ne
the representation.
SocialAction (2006): 159 citations of [PS06]. This closed source software
integrates statistics and node-link diagrams in a step-by-step (yet �exible)
process to get an overview, rank nodes and links according to their properties,
and to �nd communities and outliers. A unique layout is maintained through
the operations so users can make comparisons.
NodeTrix (2007): 176 citations of [HFM07]. When networks are globally
sparse but locally dense, the global topology is readable using node-link di-
agrams but not the local groups of nodes. To solve that problem, NodeTrix
provide a hybrid representation: node-link diagrams and matrices to visual-
ize dense groups, see Figure 3.9. A set of interaction techniques based on
direct manipulation of the nodes using drag-and-drop is available to smooth
the exploration process.
Gephi (2009): 408 citations of [BHJ09]. Inspired by GUESS and SocialAc-
tion, Gephi is an open source software for the visual exploration of any kind
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Figure 3.10: Overview of Gephi 0.8.

of networks. While various software exist to visualize and analyze networks,
Gephi is particularly suited for networks with node properties like gender and
age in social networks. Designed to facilitate the non-linear process of in-
formation discovery, it is focused on the visualization of the network using
node-link diagrams, real-time interaction, and the use of a visual language.
Gephi is coded in Java and can be extended by plugins.
Treeplus (2006) [LPP+06], Vizster (2005) [HB05], and the degree-of-
interest approach proposed in [vHP09]. These approaches generally support
the idea of starting with a small subgraph and expanding nodes to show their
neighborhoods (and in the case of [vHP09], help identify useful neighborhoods
to expand).

3.1.5.3 Special Notes on Gephi

I have co-founded Gephi 3.10, an open source software for the visual explo-
ration of networks. As stated above, Gephi is particularly suited for networks
with node properties. Properties are key-value pairs associated to each node
or each link. For example, members of a social network may have attributes
such as gender, language, and age.

Gephi software is generic. Any kind of network can be analyzed, like
communication (e.g. email) and �nancial networks, online social networks
(e.g. Twitter, Facebook), data center networks (i.e. connections between
machines), document networks, among others.

Gephi has been designed to facilitate the non-linear processing of infor-
mation discovery. In particular, it is focused on the visualization of the net-



44 Chapter 3. Visual Event Detection

Figure 3.11: A sample network manually stretched and released while ForceAt-
las2 is running [JHVB11].

work using node-link diagrams (in which nodes are represented by discs and
links by lines), real-time interaction with data (e.g. node grouping, �ltering,
use of statistical results in the visualization), and the building of a visual
language (the mapping of data variables to visual variables was theorized
in [Ber83], [CM84]). This language makes use of colors and sizes to create in-
formative visuals, which aim at being the network equivalent of geographical
maps [BKB05].

A typical visual analysis with Gephi follows the well established mantra
of Visual Information Seeking: �Overview First, Zoom and Filter, Details-
on-Demand� [Shn96] detailed previously. The objective is to reveal visual
saliencies of interest for the analyst, i.e. elements which perceptually stand
out from the remainder of the elements and grab the attention of the ob-
server [HBE96]. Such saliences may challenge current hypotheses and raise
new questions. The analyst then changes the visualization accordingly, to
eventually select a picture which clearly reveals an issue, or which supports
an hypothesis.

In Gephi, users interact with the visualization in real-time to position
nodes in a two or three dimensional space using layout algorithms, or by manu-
ally moving nodes (see Figure 3.11). They use node properties to change their
colors and sizes, in order to �nd groups and detect signi�cant nodes (i.e. indi-
viduals in the case of social networks). The goal is to study the correlation of
node properties and network structure by using visual patterns. Classic data
mining algorithms of Social Network Analysis, such as the Louvain community
detection algorithm [BGLL08], or the betweenness centrality measure [Bra01],
can be computed at any time and their results integrated in the visualization
through visual features. The network can also be �ltered according to nodes
and links properties.

The strengths of Gephi are its real-time visual feedback, performance, code
modularity, and community of developers and users. The Gephi user interface
is focused on the creation of network visuals in real-time. The key innovation
is to ease the interaction with the network, as users can literally play with its
visual representation. By playing, we mean experimenting various visual con-
�gurations to see the outcome of any action instantaneously, for instance by
testing di�erent force-directed layouts to shape the network structure. Such
algorithms are usually described as spring embedders [Kob12] due to the way
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the forces are computed. These layouts rely on a physical metaphor to po-
sition the nodes according to the position of the others. Roughly speaking,
connected nodes tend to be closer, while disconnected nodes tend to be more
distant. More precisely, they compute repulsive forces between all nodes, but
also attractive forces among adjacent nodes. Each layout iteration calculates
the forces applied on each node, and updates its position. The visualization is
refreshed at each iteration, thus providing real-time feedback to users. Some
layouts are implemented with no stopping condition. Users can thus tweak
the layout parameters in real-time until they decide to stop its execution. In-
teracting with the visualization while calculating layout is made technically
possible by using multi-threading processing, and by using the gpu for ren-
dering the visualization.

These features enable the visual exploratory analysis of networks as ex-
plained in the Appendix. The approach of Exploratory Data Analysis [Tuk77]
emphasizes the importance of curiosity and serendipity (i.e. discoveries made
while searching for something else) to data analysis. The main bene�t is to
generate novel questions and research hypotheses. Gephi is used worldwide
and supports a large user community; the last version (0.8.2-beta) has been
downloaded 194,000 times1 from January 1, 2013 to October 13, 2013.

Finally, Gephi is an ideal platform to implement dynamic network visual-
ization features: [FQ11] states that despite the interest and advances from the
visualization community in dynamic social networks, the number of available
systems used by social network scientists that handle dynamic networks is
still lagging behind the developments reported from visualization. The au-
thors call for implementation of such mechanisms into comprehensive general
purpose systems that are widely available, not only in prototype systems. We
have worked on the addition of speci�c features for dynamic network analysis
during this thesis, which can be used to detect events.

3.1.5.4 Problems with Very Large Datasets

Existing tools are faced with critical issues with very large networks.

Large Static Networks: The rapid increase of memory and processing re-
sources, associated with improvements on the algorithms that generate visual
patterns, has enabled us to process and display larger and larger networks on
screen. However we face both cognitive and technical limits:

• Representations are cluttered when visual items overlap. This situation
can be due to limited screen sizes, or to the use of layout algorithms
that do not take dot size nor node labels into account.

1https://launchpad.net/gephi/+download

https://launchpad.net/gephi/+download
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Figure 3.12: Node-link diagram of a few thousand node network, using the
ForceAtlas 2 layout.

• We may lose preattentive perception e�ects by mixing di�erent visual
features, which makes it di�cult to combine various data variables in a
single representation (see Section 3.1.1).

• The readability of graph layouts (see Section 3.1.3) may vary with the
analyst's knowledge and with the performed tasks. Making layouts rea-
sonably good for the largest number of situations is therefore challeng-
ing; so is the dissemination of graphical conventions.

• Some analytical tasks remain di�cult with large numbers of displayed
items, like following the path from one node to another.

• Real-time interaction is desired to facilitate trials and errors on data,
and the processing chain should be �exible enough to handle various
network structures like the evolution over time, but a tradeo� must
be found between �exibility, development costs and performance when
implementing data structures and algorithms.

The global approach has therefore many limits when displaying a large
amount of data like in Figure 3.12. Increasing the size and resolution of
computer screens is however not a solution, because it implies increasing the
requirements of computing power, and this factor is not always controlled
as people generally keep their computers for a couple of years. With more
processing time required between every interaction with representations, the
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Figure 3.13: Knowledge of future changes can guide the choice between oth-
erwise equally good layouts [BIM12].

process of visual exploratory analysis may become so painful that analysts
may completely abandon visualization.

Temporal Networks: Traditional approaches use a time-to-time mapping
and show the time-varying graph data as animated sequences of node-link
diagrams. Although this visualization strategy is very intuitive it also has the
following drawbacks:

• If the graph is very dense, i.e. contains many links, visual clutter occurs
because of many link crossings.

• Animation requires cognitive e�orts from a viewer to preserve his mental
map.

• Sophisticated layout algorithms needed to circumvent these problems
have a high run time complexity, see Figure 3.13.

Some approaches use a time-to-space mapping and show the stream of
interactions over time entirely. Large networks are however unreadable, see
Figure 3.14. A solution may be to aggregate data, but aggregation techniques
are questionable when the exploratory task is unclear. Bias introduced by
sampling methods should be completely understood to avoid misinterpreta-
tion of visual results. Network segmentation is also hardly applicable in case
of small-world networks (where the average shortest path between nodes in-
creases much slower than the number of nodes), or loosely speaking when the
network topology is not a grid, which has been shown to be a shared property
of many real-world networks encountered so far by researchers [WS98].

However, visualization of the whole network is not absolutely necessary. It
is even sometimes not feasible nor desirable. Instead, one may look at a sub-
part of the network with carefully chosen strategies to retrieve the sub-graphs
of interest. We discuss the alternative to the global approach in the following
Section.
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Figure 3.14: An interaction network visualized using the timeordered pack-
age for R. Time is on the vertical axis, nodes are listed on the horizontal
axis [BD11].



3.1. Related Work 49

3.1.6 Local Approach for Network Visualization

The global approach has become very popular as we have seen in the previous
Section, but the observation of global patterns is not always relevant. This is
the case in particular when we need to investigate a particular node and its
connections (a task called �lookup�). More concretely, a local approach may
be successfully performed in the following (non-exhaustive list of) activities:

• Data cleaning: scientists sometimes have to �nd and delete duplicate
nodes due to measurement errors.

• Network monitoring: network administrators try to identify security
holes after the detection of a suspicious pattern of activities from a
visitor.

• Impact analysis: programmers need to understand the dependencies of
a speci�c piece of code to prevent the impact of potential changes.

Moreover, many datasets such as the ones available from online social net-
works (e.g. Twitter, Facebook, Github) are simply too large to be fully dis-
played by average computers, as they are made of millions of nodes and links.
Common graph databases like Neo4j2, OrientDB3, DEX4 and TitanDB5 are
designed to scale and hence allow the storage of dozens millions, even billions
of nodes and links. However, even for much smaller networks, less power-
ful devices like tablets do not have the required resources to compute these
overviews, and to interact smoothly with representations. When it comes to
navigating in large networks, researchers [LPP+06, vHP09] (see Figure 3.15)
and some commercial products such as Palantir6 or Linkurious7 propose so-
lutions that deviate from the �Overview �rst, zoom and �lter, details on de-
mand� visualization strategy. This idea is not new in the context of graph
drawing [ECH97,PvH12] but the recent availability of large networks makes
local visualization an attractive approach to skirt the technical and cognitive
burden of overviews.

3.1.6.1 Bene�ts

The local approach is an alternative capable of overcoming (to some extent)
the limitations of the global approach. It takes its roots in ego-centered views,
i.e. nodes connected to an ego node at a limited distance, with connections be-
tween these nodes. For instance, your friends and the friends of your friends

2http://www.neo4j.org
3http://www.orientdb.org/
4http://www.sparsity-technologies.com/dex
5http://thinkaurelius.github.io/titan/
6https://www.palantir.com/
7http://linkurio.us/

http://www.neo4j.org
http://www.orientdb.org/
http://www.sparsity-technologies.com/dex
http://thinkaurelius.github.io/titan/
https://www.palantir.com/
http://linkurio.us/
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Figure 3.15: Screenshot of [vHP09] showing a local exploration of a graph.
�A user types a query in the searchbox (a) which yields a number of hits
presented in tabular form (b). One of these hits can then be dragged to the
main screen (c) which shows the sub-graph centered on that node. Other
nodes that match the user's search are highlighted in blue. Users can adapt
the balance between di�erent components of the Degree Of Interest function
and the size of the subgraph in a separate panel (d).�
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can be represented by an ego-centered network of distance 2 from the ego
(you). Such views are traditionally found in Social Network Analysis stud-
ies [Was94].

The goal of local approaches is to ease the navigation from node to node
and to help focus on nodes of interest without being distracted by the rest of
the network. The key point is to visualize nodes and links surrounding a given
node or a given group of nodes, then to expand this local view with additional
neighbors according to the analyst's interest. The initial set of nodes may be
the result of a search query or a pre-computed view provided by the system
which de�nes an �optimal� context. The nodes to be expanded may also be
suggested by the system based on topological features and properties of nodes
and links. The main bene�t of this approach is the reduction of the number
of simultaneously displayed items so that a large variety of devices may be
able to display the representations.

3.1.6.2 Drawbacks

The main drawback of the local approach is the loss of a complete overview.
It can lead to a false perception of global properties of the network under
study as shown in [New03]. Such views are indeed biased samples centered on
speci�c nodes.

Moreover, users get easily lost in the graph because layouts change when
nodes are added in or removed from the local view. A potential solution is the
integration of a �mini-map� (i.e. miniature map typically placed at a screen
corner to aid orienting in the visual space) displaying a stable yet simpli�ed
representation of the whole network. Mini-maps are sometimes provided in
overviews as well as they help when the camera is zoomed in.

Another problem also appears when nodes with a high number of connec-
tions are displayed. Sometimes called super-nodes or hubs, they may have
thousands of connections while average nodes have less than a dozen. They
distort representations which become hard to read and to navigate. [vHP09]
proposes a solution against the �super-node problem�. The node's local view
is computed based on current browsing activity, network topology and nodes
with statistically interesting properties. Only nodes with the highest interest
scores are displayed. Analysts can then expand the local view on directions
suggested by the system.

In the global approach, the entire network is a single entry point. On the
contrary in the local approach, analysts can enter in the network in multiple
ways, for instance using a search query, a meta-graph, or a pre-computed
view. Other techniques must hence be provided to help dig into the network
data, i.e. to provide an entry point into the network.
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Figure 3.16: Example of outlier detection in matrix [BDW05]: �associations of
the �les in the /browser subdirectory of the software archive of the MOZILLA
project. As the �les are ordered hierarchically one can see that �les which are
next to each other, i.e. those that are in the same part of the hierarchy,
are more strongly related than others. Thus clusters typically extend along
the diagonal of the matrix. Outliers are these pixels representing couplings
between �les in di�erent directories. One outlier is highlighted by a circle.�

3.1.6.3 Entry Points Techniques

The �rst entry point is inspired by information retrieval techniques, as it im-
plies searching for and selecting a focal node, then displaying its neighborhood.
Van Ham and Perer introduced this technique in [vHP09] to help reveal points
of interest in a large citation network of legal documents. They coined the
following mantra to sum up the approach:

�Search, Show Context, Expand on Demand�

This approach allows analysts to navigate in the network by following
the links with a minimal visual complexity, even in large networks. The
main drawback is the necessity for the analyst to have an initial idea of the
things to look for in order to formulate a relevant search query. To guide
the analyst in the search process, the graphical user interface should provide
enough a�ordances (i.e. �the perceived and actual properties of the thing,
primarily those fundamental properties that determine just how the thing
could possibly be used.� [Nor88]), like the auto-completion of the search �eld
results.
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The second entry point relies on the computation of a meta-graph, i.e. a
graph computed from the original network where meta-nodes represent node
aggregates, and where meta-links represent aggregates of links that connect
the nodes of two meta-nodes. The meta-graph is much smaller than the orig-
inal network in order to use it as a �summary� graph. The meta-graph is
the result of an automatic analysis performed before visualization. Once dis-
played, the analyst can expand meta-nodes of interest to dig into sub-parts of
the network. This approach is proposed for instance by [MHYLG13] to visu-
ally explore large folksonomies, i.e. triplets of <user, document, tag>, which
result from social bookmarking tools such as FlickR, Del.icio.us and Bibson-
omy. This approach is related to the Visual Analytics mantra [KMSZ06],
which is an established guideline for iterative visual analysis of large datasets:

�Analyze First, Show the Important, Zoom and Filter, Analyze
Further, Detail on Demand�

The di�erence with the Visual Information Seeking mantra is the emphasis
on the automatic discovery of points of interest before any visualization.

Finally, the last entry point relies on the extraction of a sub-graph prior
to visualization, using data mining algorithms. This approach is particularly
appealing in the case of temporal networks, where a slice of the network
evolution may be extracted and projected as a static network for further visual
analysis [LJRH11,MFKN09,LSH+11].

3.1.7 Visual Outlier Detection in Static Networks

Visualization has inherent capabilities to help reveal outliers in static net-
works. As we have seen in this Chapter, the visual language of node-link dia-
grams and adjacency matrices (see Figure 3.16) represent structural features
such as connected components, paths between nodes, density of connections,
and communities. They turn out to be e�cient in spotting structural outliers
like isolated nodes and small components, bridges between groups, surprising
links [RJTT+06], and unusual communities. Researches in human perception
provide guidelines to augment representations with visual features for reaching
preattentive processing e�ects, where outliers can be identi�ed without cogni-
tive e�ort and almost instantaneously. The Gestalt theory also helps explain
how we interpret various arrangements of elements to better understand biases
(e.g. false outlier detection and missed outliers), to improve existing layout
algorithms and to create new visual metaphors that are e�cient in terms of
outlier detection. The use of combined views is reported in [NSGS07] to make
outliers more noticeable.

However sheer visual analysis is not su�cient: the readability of graph
layouts generally decreases with an increase of network size, and matrices
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Figure 3.17: Node outliers detected by OddBall [AMF10a].

are limited by the number of rows (or pixels) that can be displayed at a
single glance. Integrating data mining techniques into interactive exploration
systems is a solution to assist the analyst and to speed up the detection of
relevant outliers. For instance, terrorists heads have been identi�ed using a
network analysis method in [PS08].

Large graphs of billion nodes and links pose the fundamental problem that
there are simply not enough pixels on the screen to show the entire graph.
Finding a good starting point to investigate them becomes a di�cult task,
as users can no longer visually distill points of interest. A method based on
anomaly detection techniques in data mining (e.g. OddBall [AMF10a], see
Figure 3.17), called attention routing, is proposed in [Cha12] to channel users'
attention through massive networks on interesting nodes or subgraphs which
do not conform to normal behavior.

Able to spot outlying ego-networks, EgoNav [HACH12] is a visual analytics
system that characterizes egos based on the relationship structure of their
egocentric networks and presents the results as a spatialization. An ego, or
individual node in a network, is most closely related to its neighbors, and to
a low degree, to its neighbor's neighbors. For example, in social networks,
people are closely related to their friends and family. Using network motif
analysis and dimensionality reduction techniques, the system places egos in
similar areas of a spatialization if their egocentric networks are structurally
similar. This view of a network discriminates between the various classes of
typical and exceptional egos.

To illustrate outlier detection in a non-trivial case where the expert has no
prior idea of what would constitute an outlier, we take the example of a Web
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(a) (b) (c) (d)

left-hand 
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Figure 3.18: Example of outlier detection in a node-link diagram [HLG13a]:
Giant component (i.e. connected component of the largest number of nodes)
of the network of moroccan migrants websites (e-Diaspora): (a) graph laid
out using the ForceAtlas algorithm; (b) colors mapped to Louvain modu-
larity communities (resolution=1); (c) colors mapped to website categories
(blue=blog, green=institutional, orange=NGO, ...); (d) colors mapped to lan-
guages (blue=French, red=English, orange=Spanish, ...). Links colors corre-
spond to source node colors.

data analysis from the e-Diaspora research project [Dim12]. This project aims
at studying the usages of the Web by migrants communities. A migrant site
is a website created or managed by migrants or that is related to migrations
or diasporas. This may be for example a personal site or blog, the site of an
association, a portal / forum, an institutional site. After the collection of the
initial corpus of websites, researchers annotate each website using properties
de�ned manually, and an automatic detection of the website's main language
is performed. The dataset contains both websites (nodes), hyperlinks between
them (links), and properties of the websites (i.e. node properties). Then the
network is visually analyzed using Gephi. The following analysis is performed
on the network of websites of the Moroccan diaspora.

The Gephi ForceAtlas layout is applied to this network to get an overview
of the network structure, see Figure 3.18 (a). We observe that it is clearly
divided into two main clusters8 of nodes (on the bottom-left and on the top-
right) with a few nodes connecting these clusters.

To validate this observation, the Louvain modularity algorithm (resolu-
tion=1) is applied, which automatically detects non-overlapping communities
that are �nally represented with di�erent colors. Intuitively, it shows how
the network is divided naturally into groups of nodes with dense connections
within each group and sparser connections between di�erent groups. We see
in Figure 3.18 (b) that the left-hand cluster is clearly detected. Sub-clusters
are also detected in the right-hand cluster (the resolution parameter may be
modi�ed to �nd di�erent sub-clusters), however Louvain algorithm provides
no justi�cation on the existence of these clusters. The algorithm may indeed

8The equivalence of the problem of �nding visual clusters and statistical clusters is
demonstrated in [Noa09].
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detect communities in networks with no community structure, which is one of
its limits.

One would like to explain why these clusters exist, and why some nodes
(visual outliers) act as bridges between them. The correlation between node
properties and visual patterns is thus studied. The property called website
category is mapped to node colors, see Figure 3.18 (c). We observe that the
left-hand cluster corresponds very clearly to websites classi�ed as blogs (in
blue). This trivial grouping supports the hypothesis that blogs tend to be more
connected to other blogs than to the remainder of the websites. However there
is no trivial grouping for the right-hand cluster. So the property of website
main language is mapped to node colors, see Figure 3.18 (d). We observe
that the websites of both left-hand and right-hand clusters are mostly written
in French (in blue), but the clusters also contain some websites written in
English (in red). A sub-cluster (in red) in the right cluster is also con�rmed;
it corresponds to the red cluster detected by the Louvain algorithm. Finally,
we observe that one of the websites connecting the two clusters is written in
English, and it is connected to the other websites in English. This node is
clearly an outlier, and more importantly we can explain how and why this
node has a particular role in the network. This observation indeed supports
the hypotheses that the existence of hyperlinks between websites is correlated
to websites language, and that the outlying website seems to play a key role
for websites written in English. Data mining techniques are therefore very
helpful for visualization but we have seen that they are no substitute to them
in exploratory approaches, as illustrated here in the interpretation of clusters.

The methods for static networks may be used when dealing with temporal
networks, if static networks are extracted from time periods. Nonetheless,
temporal networks calls for more speci�c approaches, which we cover in the
following Section.

3.1.8 Visual Event Detection in Temporal Networks

Temporal networks (i.e. networks where nodes and links appear and disappear
over time) have been the subject of increasing interest, given their potential
as a theoretical model and their promising applications. Most of the temporal
networks we have encountered so far are encoded using three di�erent tech-
niques. The �rst one consists in a series of networks (usually called snapshots)
representing the state of the network at di�erent moments of time. The sec-
ond technique consists in a series of changes, like the addition and removal
of nodes and links. The third technique consists of a network where node
and link existence is bound to time intervals (i.e. selection of time points).
Surprisingly, a fourth technique is sometimes found: static networks contain
nodes which represent periods of time, where entities existing in these periods
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Figure 3.19: Di�erent methods of visualizing network dynamics [WZF11].

are connected to their respective nodes [LJV+]. Challenges rely on integrating
time into visualization for each encoding technique, but most researches focus
on the �rst case in practice.

3.1.8.1 Temporal Network Visualization

Known as the dynamic network visualization problem, divergent solutions ap-
pear when considering two kinds of analysis tasks [SWW11]: the �rst one
consists in identifying general features of the temporal evolution of the net-
work; the second one focuses on a speci�c node to study its properties and
neighborhood over time. However combined solutions appear to support both
temporal analysis, and the analysis of relational features and intermediate
structures like clusters.

Approaches for the study of important time features are divided into four
categories (see Figure 3.19). The �rst one, called morphing, relies on the
animation of the network with either �xed or dynamic layouts (like a movie,
see Figure 3.20) using a timeline or slider component [BdM06]. The advantage
of this visualization technique lies in its real dynamicity, which allows for a
�real-time� reproduction of structural evolution that can be visibly accelerated
or decelerated by selecting di�erent frame rates. A disadvantage of morphing
is the fact that a comparison of two di�erent network shapes can only be
achieved in a viewer's memory and, therefore, precise matching of di�erent
time layers is not possible. Software tools that support the morphing approach
are among others SoNIA [BdM06], Visone [BBB+02], Pajek [dNMB05], and
ORAnet [CCD+08].

The second one, called layer comparison, represents the network evolution
during a time period in a single view by either splitting it in small multiples
(i.e. series of small graphics) representing the network state at (at least two)
di�erent instants [APP11a], or by tracing trajectories. Small multiples may
be embedded into a timeline to support navigation over time-based animated
networks [BPF+12]. The simultaneous, side-by-side-representation of these
multiple images allows the reader to carry out an immediate, parallel com-
parison of inter-frame di�erences. This permits a detailed change analysis, as
well as projected target-performance comparisons.
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Figure 3.20: Dynamic network animation (from left to right): initial state,
element removal (red), layout change, element addition (blue) and �nal
state [BPF+12].

The third one, called layer merging, involves the visual fusion of two dif-
ferent static snapshots of one changing network. The result is a �two-in-one�
representation in which the di�erent time layers are visually distinguished (pri-
marily using di�erent colors or styles). One advantage of this method is the
potential visual ampli�cation of structural di�erences by subtracting identical
relations and highlighting the variations. A possible handicap � especially
for large-scale high density networks � could be increased intersections and
opacities [Kre05]. This option is used, for example, in the Visone [BBB+02]
and Condor [Glo07] tools.

The last one, called 2.5D view, is a 2.5-dimensional modelling method
that uses the third dimension to display network changes. Building on a
two-dimensional visualization that establishes the basis of a cube (x- and
y-axes), height represents time (z-axis) and can be used to stack di�erent
time layers [Dwy05]. This approach originated in time-geographical modelling
and can be found in the GEOMI [ADF+06] or GeoTime [KW05] tools as an
adapted visualization environment for network evolution. A detailed review
of these techniques is available in [WZF11].

In comparison with static representation, animation seems to increase posi-
tive reactions to track changes, because the corresponding static graph is often
perceived as overloaded [CDBF10,NTY01]. Furthermore, it is noted that an-
imation better re�ected how the data changed over a period of time [TK07].
[GMH+06] found out that the participants of their study identi�ed patterns
more correctly and faster with the usage of animation than they did with
small multiples. However, the level of success for the identi�cation of pat-
terns or groups depended on how strong the moving clusters and patterns
were. The results of the comparison study concerning the di�erent animation
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types by [MCF07] pointed out that the participants have clear preferences
in combination with speci�c time spans. For example, circular animation is
preferred by most participants if the time is perceived as a repeating pattern
(e.g., 24-hour period) and a linear animation is more attractive for the par-
ticipants for more common linear models which have non-cyclic character. It
is also mentioned that animation causes participants to get lost, especially if
too many data points were moving across the screen which possibly distracted
the viewers' attention [FQ11,NTY01,RFF+08]. In that case, [FQ11] suggests
to use animation sparingly. Furthermore, it also plays a signi�cant role if
the participants have the possibility to control the animation or not. For ex-
ample, [RFF+08] points out that participants have to �nd very rapidly the
data they want to observe when they have no control over the animation. In
comparison if the animation or small multiples are more e�ective for analysis
tasks, [RFF+08] found out that their animation approach to show trends in
data is valuable especially for presenting data. For tasks of data analysis the
usage of small multiples appeared more e�ective. But [AP12] has found the
opposite: small multiples are more e�cient for presentation (probably because
they o�er a quick access to di�erent points in time), but animation performed
better on orientation tasks such as locating nodes and following long paths.

Evaluation studies [GMH+06,TKSP08] have shown that the speed should
also be considered to assess how well participants identify changes in the
animation. For example, the participants do not have su�cient time to realize
changes if the speed of the animation is too fast. However if the speed is too
slow, the visual system has problems to maintain the Gestalt grouping.

In most of the evaluation studies reported in [KPS12], the participants have
the possibility to interact with functions like play, pause, control the speed
and jump back or forth between keyframes. In addition to buttons for play,
pause or stop, the play controller often includes a slider to play the animation
back or forward in order to regulate the desired speed. Although [APP11b]
found out that many of their participants did not use the slider (because
they felt pressed for time), it was noted that its use was useful to answer the
questions of the tasks faster. The results of the evaluation studies have shown
that the participants �rst scan the whole animation to get a comprehensive
impression and for detailed analysis they use the play controller to go to a
position of the animation or to in�uence the animation speed. It was observed
that especially for the analysis of changes in data the participants go back and
forth in the time lines to compare the frames and play the animation often
extremely slowly (see e.g., [APP11b,BDB06,FQ11,NTY01,RFF+08]).

Various visualization paradigms have also been proposed beyond node-
link diagrams and matrices. Space-�lling techniques such as pixel-oriented
visualization of changes [SWS10], complex representations of event attributes
(when, where, what) [LAM+05], circular layouts for ego-networks visualiza-
tion [ALGL11, SWW11], Hilbert curves and barcodes [ALGL11] (see Fig-
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Figure 3.21: Barcode metaphor [ALGL11]: a white dot at coordinates (i, j)
means that node j exists at time step i. The full dynamics is captured in a
single view. We circle an outlier block of nodes (left) and an outlier time step
(right).

ure 3.21), to name but a few.
While a single visualization is rarely considered as being suitable to cover

the entire visual analysis task, researchers also explore solutions to animate
transitions between combined views [HSS11]. Generally, the switch between
temporal and relational perspectives can be attained by using interactions
like zoom, pan, and rotation in 3D space, or by switching to a di�erent view
through a smooth transition. [FAM+11] proposes a solution derived from �lm-
making, the vertigo zoom, which is a synchronized combination of a dolly
movement and a zoom. This interaction technique enables smooth transitions
between the relational perspective (node-link diagrams and scatter plots) and
the time perspective (trajectories and line charts), supporting a seamless vi-
sual analysis and preserving the user's mental map.

Dynamic network visualization is also considered as a sub-problem of graph
drawing. Solutions developed so far usually rely on force-directed layouts and
circular layouts using optimization methods to balance between the layout
readability at the current time period [FT08,BIM12,Pet11,SWW11] and the
preservation of the analyst's mental map (i.e. the structural cognitive infor-
mation a user creates internally by observing the layout of the graph), which
should remain consistent through animations to preserve user's understand-
ing [PHG07, AP13]. E�ectiveness on the perception of animated node-link
diagrams remains also largely unclear [FQ11,GEY12], whereas graph layouts
have a signi�cant e�ect on the interpretation and understanding of graph
structures [BMK96,Pur97].

Clustering is also a particular and important issue for dynamic network
visualization. [FBS06] shows only clusters of nodes and their interrelations.
[SMM13] tracks the evolution of pre-computed clusters: an optimal clustering
is computed for each time-step for de�ning two visual representations. The
�rst one is an overview showing how clusters evolve over time and providing an
interface to �nd and select interesting time-steps. The second view consists
of a node-link diagram of a selected time-step which uses the clustering to
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Figure 3.22: Comparing graph snapshots [ATMS+11]: new nodes and links
are colored in red, older activities may be in lower intensities (b') to show
their age.

e�ciently de�ne the layout. The authors argue that time-dependent clustering
ensures visualization stability and preserves user mental map by minimizing
node motion, while simultaneously producing an ideal layout for each time
step. The clustering is computed in advance to update the second view in
linear time, allowing for interactivity for large graphs manipulation.

3.1.8.2 Visual Event Detection in Temporal Networks

Graph layout can be used to compare evolving structures and to spot un-
expected ones. Focusing on a local view around a node, [SWW11] proposes
a new layout encoding time in space, thus providing a static view for each
node; navigation is achieved by switching the focus node according to user
interactions. Authors argue that the complexity of the dynamic network is
greatly reduced without sacri�cing the network and time a�nity central to the
focus node. This approach is applied to detect spammers in a communication
network.

Color saturation is used in TempoVis [ATMS+11] on a node-link diagram
(see Figure 3.22) and a timeline to encode time information, allowing to spot
active nodes and links from a series of graph snapshots. In the node-link
diagram, the nodes and links that are active in the current period are colored
in red and the ones that were active before the current period are grey. The
intensity of the grey decreases with age. Analysts can use the time slider
(below the timeline) to navigate within time to see snapshots of each period.
The timeline show how the frequency of the node-link activities change over
time.

In [SFPY07], communities are tracked in a real-time fashion using a data
mining algorithm, and an adjacency matrix is plotted to identify unusual tem-
poral behavior. Events are detected by plotting the time series of a �compres-
sion cost� metric. When applied to the Enron dataset, the detected change
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points appear to coincide with key events.
Combining data mining algorithms and interactive visualization, [YAPM08]

provides a visual-analytic toolkit for dynamic interaction graphs. It de�nes a
temporal snapshot Si = (Vi, Ei) of a graph G = (V,E) as a graph representing
only entities and interactions active within a particular time interval [Tsi ;Tei ],
called the snapshot interval. The authors extract a set of S non-overlapping
temporal snapshots, and eventually study the evolution of clusters.

The tool incorporates common visualization paradigms such as zooming,
coarsening and �ltering while naturally integrating information extracted by
an event-driven framework to characterize the evolution of networks. The
visual front-end provides features that are speci�cally useful for the analysis of
interaction networks. The tool provides the user with the option of selecting
multiple views, designed to capture di�erent aspects of the evolving graph
from the perspective of a node, a community or a subset of nodes of interest.
Critical changes that have occurred during the evolution of the network are
highlighted in the event view.

The event view is designed to provide information regarding transforma-
tions that occur in the graph over time. This view displays a set of all critical
events that occur between the current and previous intervals. The user can
choose di�erent time intervals and observe the events that emerge among
them. The user can vary the parameters of the event detection algorithm
and examine the critical events obtained. The GUI provides a list of all crit-
ical events observed. The user can select one of these events. The detailed
representation of the event is visualized on the screen giving the user a repre-
sentation of the nodes involved and the change that has occurred.

The approach and the tool are very interesting but they have been designed
to analyze sequences of graph snapshots, therefore missing a large amount of
information that may be extracted from link streams [CE07].

Comparing the similarity of various large network diagrams through visual-
ization is di�cult, therefore a data mining process is used in ENAVis [LBVS10]
to assist visualization for intrusion detection in enterprise networks. The sys-
tem administrator needs to �nd out which hosts the compromised user account
has used. Have those hosts been compromised as well? What applications did
that user invoke? What data �les did this user account access during the past
two weeks since the user revealed his password? In this approach, the admin-
istrator generates a network graph around the compromised user node, to see
which hosts and �les the user has touched during the time frame and what
applications the user used. A visual graph has been considered very helpful
to see which hosts and users have been contacted by the compromised user
account and which applications it has attempted to launch.

However, an investigator does not always know exactly what he/she is
looking for. Thus an entry point is computed, and data mining algorithms are
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used to augment the domain knowledge of human investigator and guide the
visual exploration process only towards important things (e.g. by highlighting
the part of the graph that is most suspicious and needs further investigation).

In order to help detect abnormal activity, ENAVis attempts to determine
the set of variant and invariant sub-graphs. Using a graph edit distance, the
di�erence of daily network graphs is visualized to label as events the days when
the score is abnormally far from the score of expected graphs. In parallel, the
cluster visualization of the whole graph helps understanding the communities
within the enterprise network data (e.g., Firefox users and web related tra�c,
or users using similar set of applications). It eventually helps identify potential
anomalous user behaviors (i.e. outliers).

This approach is thus only suited for graph snapshots analysis, and would
be applicable to link streams only at the cost of a large loss of informa-
tion [CE07].

Interactive coordinated multiple views are also proposed in [HHY+10,
NJKJ05,MFKN09,LSH+11] to support the identi�cation and analysis of net-
work anomalies. In particular, [HHY+10] provides a node-link diagram, a
scatterplot, and a time histogram that allow interactive analysis from di�er-
ent perspectives, as some network anomalies can only be identi�ed through
joint features. Spectral analysis methods are integrated to provide visual cues
to identify malicious nodes. An adjacency-based method is developed to gen-
erate the time histogram, which allows users to select time ranges in which
suspicious activity occurs.

Finally, event detection has received a large attention in the speci�c case of
intrusion detection in computer networks. Intrusion detection systems must
not only �ag malicious events but also provide information needed for the
assessment of security incidents. This need for explainable decisions seems to
motivate the combination of data mining techniques and visualization [RL09].
These systems focus on �nding entry points in data [GBT+09] and use com-
plex network metrics like degree and graph distance to detect suspicious pe-
riods automatically [LJRH11], and to correlate events [LAM+05,QHP12]. In
particular in [LJRH11], the anomaly detection module receives �ows from
monitoring systems and then obtains tra�c �ow graphs from these �ows.
Afterwards, these graphs are analyzed over time to detect anomalies. The
attack identi�cation module is used to visually explore causes of anomalies
after detecting abnormal tra�c. An alarm is eventually emitted if an attack
is identi�ed in the abnormal tra�c.

These approaches are essentially intended to deal with series of graph
snapshots. They are not suitable for the analysis of link streams, as [CE07]
shows that much information is lost in graph snapshots and biases appear
at every time scale. In the following Section we present our contributions
through the experimentation of two di�erent types of visualization for event
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detection in link streams.

3.2 Our Experiments

3.2.1 Visual Events with the Global Approach

We have incorporated features in Gephi [BHJ09] in collaboration with Daniel
Bernardes, Cezary Bartosiak and Mathieu Bastian9 to study time-varying net-
works, where nodes and links appear and disappear over time. Time-varying
networks have been a high concern of Gephi creators since the beginning of
the project in 2008. However supporting them raises several issues in terms
of data structure e�ciency, responsiveness of the user interface, network size
and time granularity. The results we present here are our latest iteration to
provide analysis and visual exploration features to the community of Gephi
users.

Gephi internally encodes time-varying networks using time intervals, for
which the time unit is either a number or a date. Additionally, node and link
property values are also bound to time intervals. Users can thus study the
evolution of network structures over time, but also the evolution of node and
link properties.

Our prototype provides a new timeline component to select a time interval
for which a sub-graph (of nodes and links which appear at least once during
this interval) is computed and displayed. Moreover, basic statistical prop-
erties can be computed over time given a time interval (e.g. value for each
day): the number of nodes, links, graph density, average degree and individual
node degree. The results are integrated using a sparkline chart [Tuf06] on the
timeline background: this feature helps users focus on speci�c periods of the
time-varying network, like bursts of connections or changes in graph density.
Finally, the selected time interval is animated: users can make it slide as the
corresponding network is being displayed, either manually or automatically
by calibrating the animation speed and frame-rate. Users may apply a layout
during the animation to update nodes positions. Whereas the bene�t of ani-
mation is still discussed by researchers [APP11b], this feature has been asked
for by the user community through the bulletin board forum of the community
and through emails, for the creation of videos of the network evolution over
time.

Figure 3.23 shows the Gephi timeline in action on the COFA Online net-
work introduced in the Introduction section. This study was part of an anal-
ysis of the COFA Online audience on social media. Simon McIntyre, director
of COFA Online, has explored the dynamics of communication and used our
prototype to illustrate his �ndings. Our tool has helped him identify a few

9https://gephi.org/2011/gsoc-mid-term-a-new-timeline/

https://gephi.org/2011/gsoc-mid-term-a-new-timeline/
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Figure 3.23: Screenshot of Gephi showing the dynamic network of Twitter
users (connected when a user mentions another user in a tweet) talking about
COFA Online from October 26, 2011 to June 15, 2012, �ltered using the
timeline. The sparkline chart on the timeline background at the bottom of
the Figure corresponds to the number of observed links (here tweets) each day.
Nodes are geolocated and positioned according to the Mercator projection.

Twitter users who were particularly active, but we were not able to detect
clear outliers. We have investigated the events that appear on the timeline:
they are correlated to multiples mentions of a user after a message is posted.
These events are not surprising and our approach brings little but the direct
selection of the sub-graph corresponding to these periods.

Therefore we do not consider this �rst approach as satisfying. Browsing the
graph is harder as the graph size increases, and is also computationnaly costly
as all data is stored in memory, thus our prototype cannot handle graphs with
millions of links. Despite that, Gephi users use it mostly to analyze Twitter
networks of hundreds of nodes and make videos of their evolving graphs.
They eventually publish them on online sharing platforms like YouTube10

and Vimeo11.

3.2.2 Interest Points on Static Networks with the Local
Approach

We have experimented a global approach to outlier detection in the previous
Section, but we have not found it satisfying. In this Section we present our

10https://www.youtube.com/results?search_query=gephi+dynamic
11https://vimeo.com/search?q=gephi+dynamic

https://www.youtube.com/results?search_query=gephi+dynamic
https://vimeo.com/search?q=gephi+dynamic
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experiments on a collaborative project called Knot [UCC+13] in which the
central idea is to let the expert interactively shape local views of the graph
based on his knowledge and questions. Whereas the dataset is static, this
prototype and case study has led to interesting preliminary results. The ap-
proach is particularly relevant when data is highly incomplete, biased towards
a few nodes, or with vague information. In such cases, the global approach
may lead to a misinterpretation of the visualizations.

We have contributed to Knot software12, a digital tool for exploring his-
torical social networks, developed within a multidisciplinary research context
involving designers, humanities scholars and computer scientists. The goal
of Knot software is to provide scholars and researchers with an environment
for exploring multi-dimensional and heterogeneous data, allowing them to dis-
cover and create explicit and implicit relationships between people, places and
events. The graphical user interface runs on Web browsers, and queries a re-
mote database to support various devices. The main challenge relies on the
high level of uncertainty and incompleteness of data coming from MRofL, due
to a number of reasons such as the nature itself of the data (e.g. letters from
the 17th century), the process of acquisition and digitization (e.g. letters are
handwritten making it di�cult, if not impossible, to recognize and process the
content) and the heterogeneity of di�erent sources (e.g. each data collection
provides di�erent content and meta-data).

What distinguishes this approach to traditional network exploration and
analysis is a shift in attention on the construction of the network graph
through the visual interface, rather than on its static contemplation. While
visualization is often conceived as the last step in the exploration of data, our
idea is, instead, to put it in the middle of a broad process of understanding
and exploration [MVC+10]. In this way, the whole tool (not just the visual-
ization itself) has to be considered as an environment where to engage with
the data and to perform interpretative activities.

Users can decide where to start their exploration using a search engine
(see Figure 3.24). It gives the possibility to search the archive for a particular
person or a group of people that share some attributes (e.g. born in the
same country) and to add them into the representation. An autocomplete
feature helps the user during the search query, suggesting the available data
that match the request and giving some basic biographical information (birth
and death date), in order to disambiguate homonyms. This action can be
performed anytime: to enrich the visualization with other nodes, but also to
look for a speci�c node (or group of nodes) in the visualization with the search

12This software has been created within the context of the Mapping the Republic of
Letters initiative (MRofL), in partnership with the Stanford Humanities Center (http://
shc.stanford.edu/), the DensityDesign Lab (http://www.densitydesign.org/) at the
Politecnico di Milano University, and the Gephi Consortium (https://consortium.gephi.
org/). More information in Section 2.2.2

http://shc.stanford.edu/
http://shc.stanford.edu/
http://www.densitydesign.org/
https://consortium.gephi.org/
https://consortium.gephi.org/
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Figure 3.24: Screenshot of Knot retrieved on May 2013, showing the local view
around Denis Diderot. Nodes represent people, and links represent letters
exchanged. The sidebar displays the properties of the selected node.

bar. Users can select nodes singularly or through multiple selection features
(e.g. inverse selection, selection of a certain degree, of common nodes between
two or more nodes). A panel on the right shows the main information for the
selected nodes and allows the user to add explicit relationships or remove
nodes from the canvas. By selecting �Create� on the top menu, the user can
add new nodes and new relationships between individual nodes, to enrich
data or to investigate some hypotheses. Users can also apply force-directed
layouts, display speci�c relationships only, and �lter the network to re�ne the
representation (see Figure 3.24).

The project is still under active development and also aims at exploring
new opportunities for interface design and information visualization within
the de�nition of novel research practices in the Humanities, bringing together
scholars, HCI, design, and computer science communities.

During this process we have learnt how a local approach could be applied to
the study of static networks. Preliminary results are encouraging as they help
infer knowledge when most information is not available in data but belongs to
the expert. We will see in Chapter 6 how we use this approach to investigate
network events detected statistically.

3.3 Conclusion

Network visualization is a powerful medium between data and analysts. A
wide range of methods and tools are available to study static datasets, how-
ever little has been done on temporal networks, especially in terms of event
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Figure 3.25: Screenshot of Knot showing the Filters panel. Dots of the node-
link diagram are colored according to the people's occupation.

detection. We have reviewed two types of approaches in this Chapter:

• The global approach is well studied but is di�cult to apply to large
networks (because there is too much information to see anything), or to
incomplete datasets where visual results may be strongly biased.

• The local approach opens promising perspectives for the interactive ex-
ploration of large and dynamic networks.

We have then experimented both approaches. We have �rst proposed a
global visualization system to study a relatively small dynamic interaction
network. It has been successfully used but presents technical limitations and
is not suitable to event detection. We have therefore proposed another system
to help experts build local views of a network interactively. This promising
approach is explored further for event detection in Chapter 6.

Visualization is not enough to deal with large dynamic networks. Link
streams in particular raise di�cult challenges as they are not graph snapshots
ready for visualization. In the following Chapter, we introduce a data mining
technique applied prior to visualization, in order to reduce the amount of
information on screen. More precisely, this technique automatically detects
statistical events from the link stream, which analysts may explore visually
to validate and ultimately interpret these events.
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A frequent need in terms of complex network analysis is to monitor network
evolution and automatically raise alerts on abnormal behaviors, i.e. that are
statistically di�erent from most others. As explained before, this challenging
task is generally called outlier detection, and event detection for temporal data.
In spite of many works on this question during the last decades in various
�elds, the diversity of cases leading to di�erent outlier de�nitions makes it
hard to create a single universal method. While visualization provides �exible
solutions, we have seen its limits in the previous Chapter. We now explore an
automatic solution for outlier detection.

Let us consider for instance a property measured on an evolving network
(Figure 4.1). How can we automatically and reliably identify outliers in it?
This is challenging because these data exhibit at the same time regime changes
(i.e. sudden changes of the average values in the time series) due to the
evolution of the normal behavior, and outlying values that deviate globally
or locally from the main trend. Moreover, we have no prior knowledge on
the data, and events may occur at di�erent time scales. Finally we want an
on-line method for real-time analysis. These settings are known to pose a
di�cult problem.
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Figure 4.1: Evolution of a property measured on a network over time. Some
outliers are circled. Regime changes are pointed by arrows.
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In Section 4.1 we review the related work in �automatic� outlier and event
detection in static and dynamic environments respectively, i.e. not relying
on visualization techniques appropriate to human perception. Based on the
identi�ed limitations of existing approaches, we introduce a new method and
tool called Outskewer in Section 4.2 to automatically detect outliers in sets
of numbers and events in time series. The source code is available online
[HLM12]. We illustrate its relevance on the detection of abnormal events
in three use cases: the evolution of the French population during the 20th

century, the dynamics of Internet topology, and the logs of a peer-to-peer
search engine.

4.1 Related Work

4.1.1 Outlier Detection in Static Networks

Graph topology-based approaches for outlier detection are suitable for han-
dling data that cannot be easily analyzed with traditional non�graph-based
data mining approaches [NC03]; they are applied in several domains, notably
intrusion detection in computer networks and fraud detection.

Unusual links are discovered in [C+03], using various metrics to de�ne the
commonality of paths between nodes. With this approach the user can deter-
mine whether a path between two nodes is interesting or not, without having
any preconceived notions of meaningful patterns. This approach assumed that
the user queries the system to �nd interesting relationships regarding certain
nodes. The AutoPart system [Cha04] presents a non-parametric approach to
�nding unusual links in graph-based data. Part of this approach is to look for
outliers by analyzing how edges that are removed from the overall structure
a�ect the Minimum Descriptive Length (MDL)1 of the graph [Ris89]. Repre-
senting the graph as an adjacency matrix, and using a compression technique
to encode node groupings of the graph, it looks for the groups that reduces
the compression cost as much as possible.

Looking for anomalous subgraphs, the authors of [NC03,EH07] identify
subgraphs that appear infrequently, using a variant of the Minimum Descrip-
tion Length (MDL) principle. This approach has been recently applied to
intrusion detection [EGH10]. The notion of entropy is also used by Shetty
and Adibi [SA05] in their analysis of a real-world dataset: the famous Enron
scandal. They use what they call �event based graph entropy� to �nd the
most interesting people in an Enron e-mail dataset. Using a measure similar
to what [NC03] have proposes, they hypothesize that the important nodes are

1In minimum descriptive length, clustering is performed to minimize the number of bits
required to represent the graph, and change points occur when there is signi�cant change
in the representation.
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the ones that have the greatest e�ect on the entropy of the graph when they
are removed.

In the more speci�c context of the detection of nodes with anomalous
neighborhood, the authors of [SQCF05] identify outlier nodes in bipartite
graphs based on properties of their neighborhood. Using an adjacency matrix,
they assign a �relevance score� such that every node has a relevance score with
every node, whereby the higher the score the more related the two nodes. Sim-
ilarly, [AMF10b] proposes OddBall, which characterizes node's neighborhoods
in unipartite graphs by analyzing some of their features to de�ne a �normal�
neighborhood, and to detect abnormal ones on weighted graphs.

Networks of dynamic systems can be highly clustered [WS98]. A com-
munity, de�ned as a collection of individual objects that interact unusually
frequently, is a very common substructure in many networks [GN02], including
social networks, metabolic and protein interaction networks, �nancial market
networks, and even climate networks. In social networks, a community is a
real social grouping sharing the same interests or background [GN02]. In bio-
logical networks, a community might represent a set of proteins that perform
a speci�c function together. Communities in �nancial market networks might
denote groups of investors that own the same stocks, and communities in cli-
mate networks might correspond to regions with similar climate or climate
indices.

Many algorithms have been developed for detecting community structures
in static graphs. [GN02] have proposes a community discovery algorithm based
on the iterative removal of links with high betweenness scores. To reduce the
computational cost of the betweenness-based algorithm, [CNM04] have devel-
oped a modularity-based algorithm. [BGLL08] have designed an e�cient algo-
rithm to �nd communities by optimizing modularity. In contrast, [PDFV05]
does not focus on detecting separate communities, but on �nding overlap-
ping communities. De�ning communities as maximal cliques (i.e. subgraph
in which each node is connected to each other), [SSTP09] propose a parallel,
scalable, and memory-e�cient algorithm for their enumeration.

Community outliers correspond to nodes with unusual position regard-
ing communities. For instance, node attributes may be used to detect nodes
in communities which have an unusual value for a given attribute, compared
to the other nodes [GLF+10]. They are local outliers. In overlapping com-
munities, outliers may be nodes that do not belong to any of the communi-
ties [NPNB08].

Comparing multiple graphs, outlying graphs may be seen as graphs
which do not overlap well with the frequent subgraph patterns [Agg13]. The
use of a k-nearest neighbors outlier detection algorithm is also a viable alterna-
tive in this case, because of a wide variety of available algorithms for similarity
search in graphs. Numerous similarity functions are commonly used such as
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the graph edit distance, largest common subgraph, largest matching node set,
in order to perform the similarity search. While these methods correspond to
generic extensions of multi-dimensional outlier detection algorithms, [Agg13]
notices that not much work has been speci�cally targeted towards outlier de-
tection in this domain.

Finally, a cautionary word should be written about so-called outlier de-
tection methods which are reported in [Agg13], and the di�erence between
important data points and outliers. As we have seen in Chapter 1, outliers
are values which deviate signi�cantly from the rest, i.e. there is a �normal
behavior� in contrast to abnormal ones. Therefore the condition to the ex-
istence of outliers in univariate data is that its distribution of values should
be homogeneous. Roughly speaking, the mean should be a relevant indicator,
otherwise there is no sense of normality in the data, hence there cannot be
outliers in it. However in [Agg13], which is the latest survey on outliers in net-
works, many cited methods based on network features that exhibit power-law
(or heterogeneous) distributions, and �ag as outliers the values which deviate
from these power laws. However the method seems irrelevant because such
distributions should not be described by the mean value due to their shape:
there is no notion of �normal values� in power-laws, so there is no sense of �nd-
ing abnormal values either. Although the detected values may be important,
they are not outliers according to our de�nition.

These methods are suitable for static networks but further studies are re-
quired to understand their limits on dynamic networks. Previous works [AG10,
AG11] have shown for instance that communities are highly unstable in dy-
namic graphs, even those with very small changes in the topology, and raise
new questions. The extension to dynamic networks should therefore be con-
sidered very carefully.

4.1.2 Event Detection in Dynamic Data

4.1.2.1 Temporal Data

The detection of outliers in temporal data relies mainly on two approaches
using time series. In the �rst one, points which deviate from a temporal model
are marked as outliers. Parametric models for time series outliers proposes
by Fox in [Fox72] represents the �rst work on outlier detection for time series
data. Several models have been proposes in statistics literature after Fox's
work, including autoregressive moving average (ARMA) [BJ76], autoregres-
sive integrated moving average (ARIMA), vector autoregression (VARMA),
CUmulative SUM Statistics (CUSUM), exponentially weighted moving av-
erage, �nite-state automaton models [Kle02], etc. A detailed presentation
is beyond the focus of this Chapter, and more information can be found
in [BL94,Haw80,RL87]. In the second approach, points very di�erent from
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other points within a sliding window are marked as outliers. Regime changes
(i.e. sudden changes of the mean between two (near-)steady states in time
series) may be considered as anomalies (drifts) as well [Car88, TY06]. The
impact of resolution (i.e. time scale) on detected events is however rarely
studied [ZZJ+08].

A more comprehensive survey on general methods to detect outliers in
temporal data can be found in [GGAH13]. Whereas numerous methods exist,
we focus now on distance-based techniques in data streams, because they are
more relevant to our study.

4.1.2.2 Distance-based Outliers for Sliding Windows

Given a data stream, at any time point, one can discover outliers from the set
of points lying within the current sliding window. Distance-based outliers can
be discovered both in a global as well as in a local sense on points within the
current sliding window. Variants of such distance-based outliers for sliding
windows have also been discussed in the literature.

Distance-based Global Outliers: Given a data stream, the problem is
to �nd distance-based outliers in any time window [AF07,YRW09]. As the
window moves, old objects expire and new objects come in, see Figure 4.2.
Since objects expire during stream evolution, the number of preceding neigh-
bors of any object decreases. Therefore, if the number of succeeding neighbors
of an object is lower than k, the object could become an outlier only because of
the stream evolution. Conversely, since any object expires before its succeed-
ing neighbors, values having at least k succeeding neighbors will be considered
as normal for any stream evolution. Such values are called �safe inliers�.

[AF07] proposes an exact algorithm to e�ciently compute distance-based
outliers using a new data structure called Indexed Stream Bu�er (ISB) which
supports a range query. Further they also propose an approximate algorithm
which uses two heuristics: 1) it is su�cient to retain in ISB only a fraction of
safe inliers; 2) rather than storing the list of k most recent preceding neighbors,
it is enough to store only the fraction of preceding neighbors which are safe
inliers with regards to the total number of safe inliers.

[YRW09] states that maintaining all neighbor relationships over time
may be very expensive, so abstracted neighbor relationships should be main-
tained. But maintaining such cluster abstractions is expensive too. Hence,
the authors exploit an important characteristic of sliding windows, namely
the �predictability� of the expiration of existing objects. In particular, given
the objects in the current window, the pattern structures that will persist in
subsequent windows can be predicted by considering the objects (in the cur-
rent window) that will participate in each of these windows only, and these
predicted pattern structures can be abstracted into �predicted views� of each
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Figure 4.2: Consider the current window (the dashed one) at time t18: both o9
and o11 are inliers, since o9 has four neighbors (o5, o10, o14, o15), and also o11
has four neighbors (o3, o4, o6, o13). Moreover, since o9 has three succeeding
neighbors, it is a safe inlier, while o11 is not a safe inlier. Indeed, consider
instant t22. The object o9 is still an inlier: object o5 expired, but o9 has still
three (succeeding) neighbors. Conversely, o11 is now an outlier: objects o3, o4
and o6 expired, and now it has only one neighbor [AF07].

future window. An e�cient algorithm is proposed which makes use of the
predicted views to compute distance-based outliers.

This method is suited for time series and streams of multivariate data
points. It has three parameters: the maximum distance between two neigh-
bors, the number of neighbors under which a data point is �agged as outlier,
and the size of the time window within which neighbors are computed. One
should thus test various con�gurations to �nd a good tradeo� between accu-
racy and precision of the computed outliers. On the contrary, our approach is
limited to univariate data but it only needs one parameter (the size of the time
window). Moreover, events are not interpreted in the multivariate dataset; it
may therefore be hard to explore a dataset using this method. As it focuses
on one variable at a time our method is more suitable for event interpretation.

Distance-based Local Outliers: Static Local Outlier Factor (LOF) [BKNS00]
can be applied to the incremental LOF problem (i.e., the stream setting) in
three ways: 1. periodic LOF, i.e., apply LOF on entire dataset periodically,
or as 2. supervised LOF, i.e., compute the k-distances, local reachability den-
sity (LRD) and LOF values using training data and use them to �nd outliers
in test data or as 3. iterated LOF where the static LOF algorithm can be
re-applied every time a new data record is inserted into the dataset. A better
approach is proposes in [PLL07] where the incremental LOF algorithm com-
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putes LOF value for each data record inserted into the dataset and instantly
determines whether the inserted data record is an outlier. In addition, LOF
values for existing data records are updated if needed. Thus, in the insertion
part, the algorithm performs two steps: a) insertion of new record, when it
computes the reachability distance, LRD and LOF values of a new point; b)
maintenance, when it updates k-distances, reachability distance, LRD and
LOF values for a�ected existing points.

[VGN08] proposes a problem similar to the local outlier factor for data
streams. Let Dp be the average distance of a point p from its k nearest
neighbors. Let µp and σp be the mean and the standard deviation of D
for all neighbors of p. Then the relative outlier score for p is given by 1 −
(Dp/µp). The point p is called an outlier if the absolute value of its relative
outlier score > (3σp/µp). Given this de�nition, the authors propose a Relative
Neighborhood Dissimilarity algorithm to detect outliers, that maintains a set
of n clusters that represents the k nearest neighbors knowledge captured from
the historical data.

Theses methods are also suited for multivariate data points. They main-
tain a data model to cluster the incoming data points and to spot as outliers
the points far from these clusters. However the interpretation of these events
is not performed in the papers so we cannot validate the relevance of the
methods. In the following, we review speci�c methods to detect events in
temporal networks.

4.1.3 Event Detection in Temporal Networks

The detection of events in evolving networks addresses two problems:

• Change points detection: given a sequence of graphs or a stream of
links, �nd time points at which graph changes signi�cantly.

• Attribution: �nd (top k) nodes / links / regions that change the most.

In this Section we cover recent methods in series of graphs and graph streams,
for detecting change points in time and region (or community) outliers.

4.1.3.1 Graph Streams Outliers

The studies reviewed here assume an incoming stream of graph objects (or
snapshots), denoted by G1...Gt.... Thus, the ith graph in the stream is denoted
by Gi. Each graph Gi has a set of nodes, which are drawn from the node set
N . Each node is associated with a unique identi�er, which may be a string,
such as the IP address in a computer network, or the user-identi�er in a social
network. The set N may be very large in web-scale applications. For example,
in a network application, the node set may consist of millions of IP addresses,
whereas in a social network, it may contains millions of users.
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Figure 4.3: Series of graphs, or snapshots, with the time series corresponding
to a measured feature of these graphs [AF10].

The main framework for detecting anomalous graph objects involves cal-
culating a similarity/distance scores between two consecutive graphs (see Fig-
ure 4.3), then spotting as outliers the graphs for which the scores are above a
certain threshold, or are too far from the values predicted by a model of the
time series. Ideally the methods should scale to millions of nodes and links
for real-world applications.

Using various graph topology distance measures, [Pin05] models each cor-
responding time series as an ARMA process. By assuming the stationarity
condition, outliers are time points where �tting residuals exceed a threshold.
The distances between two graphs are metrics, i.e. d(G,H) ∈ R+; the zero
distance is equivalent to graph isomorphism, all distance measures are sym-
metric, i.e. d(G,H) = d(H,G), and they satisfy the triangle inequality, i.e.
d(G,F ) ≤ d(G,H) + d(H,F ).

For instance, the graph edit distance (see Figure 4.4) between graphs G
and H is calculated by evaluating the sequence of edit operations required to
make graph G isomorphic to graph H using the formula d(G,H) = |VG| +
|VH | − 2|VG ∩ VH | + |EG| + |EH | − 2|EG ∩ EH |, where EG and VG are the
links and nodes of graph G, and EH and VH are the links and nodes of graph
H. [Pin07] provides an extensive study of ten distance metrics.

The main limit of the approach is the ARMA modeling that involves the
detection of outliers as residuals being beyond a threshold parameter.

Instead of using a global graph distance, an alternative is to use a scan
statistics framework [PCMP05]. For each small sub-part of the data, called
�scan region�, a local statistic is computed. The maximum of such local statis-
tic is called the scan statistic of the data. The approach is to check whether
this scan statistic is greater than a threshold value. In that case, there is an
anomaly according to this method. In networks, the sub-part to be scanned is
the kthh order neighborhood of a node. Local statistics may be the number of
nodes or links, the density, etc. The approach is however not e�cient because
each neighborhood must be computed for each node.
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Figure 4.4: Residuals for median edit distance. [Pin05].

[PDGM10] gives a noticeable method using graph distance that compares
the performance of �ve graph similarity measures for anomalous weighted Web
graph detection: Node Ranking (�two graphs are similar if the rankings of their
nodes are similar�), Sequence Similarity (�two graphs are similar if they share
many short paths�), Vertex/Edge Overlap (�two graphs are similar if they
share many nodes and/or links�), Vector Similarity (�two graphs are similar
if their node/link weight vectors are close�), and Signature Similarity (�two
objects are similar if their signatures are similar�). Performance is evaluated
against the following anomalies (see Figure 4.5):

• Missing Connected Sub-graphs: all algorithms except Sequence
Similarity successfully detect this type of anomaly.

• Missing Vertices (i.e. nodes): signature Similarity has the desired
sensitivity at anomalies of di�erent signi�cance, and the behavior of
Vector Similarity and Vertex/Edge Overlap is close to the desired one.
In contrast, Vertex Ranking and Sequence Similarity fail to discern sig-
ni�cant from insigni�cant anomalies.

• Connectivity Change: sequence Similarity outperforms the other
methods in detecting row skipping anomalies; however, Signature Simi-
larity and Vector Similarity are also successful.

[ZLBM06] proposes an approach to detect events from the web by analyz-
ing the click-through data of web search engines. There are di�erent types of
events such as periodic events (national holidays), burst events (unpredictable
accidents), etc. A key feature is the incorporation of the dynamic nature of
the click-through data in the event detection process: the authors model the
semantic and evolution pattern-based similarities between query-page pairs in
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Figure 4.5: Examples of web graphs that are a�ected by anomalies.
[PDGM10].

the click-through data as a vector-based graph. Then, the real world event is
de�ned as a set of query-page pairs that are similar with respect to the seman-
tic and evolution pattern-based similarities. The problem of event detection
is then addressed by a two-phase graph cut algorithm on the dual graph of
the vector-based graph. Experimental results are run on 15 billion records of
query-page pairs over 32 days. The entire click-through data is partitioned
into 768 collections, where each collection consists of the query-page pairs oc-
curred during an interval of one hour. This method is able to detect relevant
events but is out of the scope of our research problem. It is indeed not �exible
enough to be applied on any link stream because of the semantic analysis and
the necessary bipartite nature of the underlying network.

Another set of methods rely on graph connectivity measures, where the
goal is to �nd anomalous time points at which many nodes �change� their
behavior in a way that deviates from the norm, and to spot the nodes that
contribute to the change the most. In the technique used in [AF10] (similar
to [IK04], see Figure 4.6), each node is summarized by a set of features (e.g. in-
degree, out-weight, local clustering coe�cient, etc.) extracted from its egonet
(i.e. the node itself, its neighbors, and all the interactions between these
nodes), thus each node feature is described by a time series. Next, a sliding
time window of 7 days is de�ned over these time series, and a correlation
matrix is computed between all pairs of time series vectors. A new correlation
matrix is computed at each slide of the time window (each day in the study),
and an eigenvector is computed for each matrix. The value for each node
in the eigenvector is thought as the �activity� of that node; that is, the more
correlated a node is to the majority of the nodes, the higher its �activity� value
is. Then, a �typical� eigenvector is computed from eigenvectors back in time,
and the current eigenvector is compared against it, which provides an angle
between the two vectors. Perpendicular vectors indicate a change point. The
angles are then normalized. Outliers are the top k angles, or angles above a
given threshold. Finally, to attribute change to nodes for a given time point
outlier, values of the corresponding eigenvector and projected onto a scatter
plot against the values of the typical eigenvector. Far-distant values from the
norm are manually �agged as outliers. Experiments on a large mobile phone
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Figure 4.6: Work�ow of change point detection in [AF10].

network (of 2 million anonymous customers with 50 million interactions over
a period of 6 months, involving the computation of 177 correlation matrices)
show that the change points detected coincide with the social events and the
festivals in the data. Although there exists no ground truth information in
the SMS data analyzed, the experimental results suggest that the method is
able to detect interesting time points such as Christmas and the Hindi New
Year. On the other hand, identifying the nodes that contribute the most to
a change is harder to evaluate and needs more analysis for further evaluation
purposes. On the contrary, we propose in Chapter 6 a methodology that
provides a complete validation of events and nodes involved the most.

4.1.3.2 Region and Community Outliers in Graph Streams

Work has been done on detecting stable communities in evolutionary net-
works. [HKKS04] proposes a method that utilizes a �nature community� to
track stable clusters over time. A framework for identifying communities
in dynamic social networks, proposes by [TBWK07], makes explicit use of
temporal changes. Using the Clique Percolation Method to locate communi-
ties, [PBV07] de�nes auto-correlation and stationarity to characterize a com-
munity. From an application perspective, [SCG10] identi�es climate regions
by detecting communities in time-varying climate networks.

From an anomaly detection perspective, we are interested in dynamic,
abnormal communities that could reveal novel properties of the network, as
opposed to static communities or communities at a single snapshot. For exam-
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Figure 4.7: Types of community-based anomalies in dynamic net-
works [CHS12].

ple, is there a community at snapshot t that splits into smaller communities
or merges with others at snapshot t+ ∆t? Does any community at snapshot t
disappear at snapshot t+∆t, or does any new community appear at snapshot
t+ ∆t? Do the sizes of the communities change over time?

[CHS12] demonstrates that there are only six possible types of community-
based anomalies in dynamic undirected graphs, using maximal cliques as a
de�nition of communities (see Figure 4.7). Given a time-varying sequence
of undirected graphs G = {G1, G2, G3, ...}, where the nodes in each graph
can belong to di�erent communities, they detect the clique-based anomalies
between consecutive graphs, including grown, shrunken, merged, split, born,
and vanished cliques.

A key problem in discovering trends in community transition is computing
matching communities across two distinct snapshots. [AG10] tracks communi-
ties over time with the static Louvain community detection using a partition
edit distance, and extend it in [AG11] for multi-step community detection and
hierarchical time segmentation: instead of detecting communities in each time
step, they detected a unique decomposition into communities that is relevant
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for (almost) every time step during a given period called the time window.
Since the time window length is a crucial parameter of the technique, they
also propose a unsupervised hierarchical clustering algorithm to build auto-
matically a hierarchical time segmentation into time windows. This clustering
relies on a novel similarity measure based on community structure. Sei� et
al. [SG12] detected community cores in evolving networks to deal with the is-
sue of unstable results provided by classical community detection algorithms,
but complexity issues make scaling impossible.

Finally, [AZY11] proposes to �nd surprising links between clusters. Un-
usual relationships in the graphs may be represented as links between regions
of the graph that rarely occur together. The goal of such a stream-based
outlier detection algorithm is to identify graph snapshots which contain such
unusual bridging links. In order to handle the sparsity problem of massive
networks, the network is dynamically partitioned in order to construct statis-
tically robust models of the connectivity behavior. For robustness, multiple
such partitionings are maintained. The authors proposes a probabilistic al-
gorithm for maintaining summary structural models about the graph stream.
These models are maintained with the use of an innovative reservoir sampling
approach for e�cient structural compression of the underlying graph stream.
Using these models, link generation probability is de�ned and then graph ob-
ject likelihood �t is de�ned as the geometric mean of the likelihood �ts of
its constituent links. These objects for which this �t is t standard deviations
below the average of the likelihood probabilities of all snapshots received so
far are reported as outliers. The main limit of this method is the destruction
of information due to link sampling, which may prevent �ne event detection.
The scope of this method is thus limited.

4.1.3.3 Outliers in Link Streams

Link streams are data formatted as series of time-stamped links (see the def-
inition in 2.1). We have found few studies about them, maybe because such
datasets have become available only very recently, and they are always ded-
icated to a speci�c application. Let us cite [Tho12], who proposes a novel
approach to event detection in streaming communication data, based on tem-
poral communication patterns across each link. Comparing all links or groups
of appeared links is too computationally expensive, so they build a stochastic
model to keep the most recent links in memory by de�ning a score of link
recency. In particular, they estimate the distribution of inter-arrival times
across each network link as a power-law distribution, as suggested in [Bar05].
Then they de�ne a measure of anomaly for an arbitrary region based on the
likelihood of its recent activity given past behavior. Finally, they identify the
region with the most anomalous activity. This approach is focused on the
detection of changing regions and is thus too speci�c for our concern: it is
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presupposed that such regions can be determined and are comparable.
Another kind of link stream is clickstream data, i.e. the recording of the

parts of the screen a computer user clicks on while browsing the web or using
another software application. Every time users click anywhere in the web page
or application, the action is logged on a client or inside the web server, as well
as possibly the web browser, router, or proxy server. Clickstream analysis
is useful for web activity analysis, software testing, and market research. In
Web tra�c monitoring, the MAWILab [FBAF10] project aims for instance at
providing a dataset to help researchers evaluate their tra�c anomaly detection
methods. These methods are however restricted to IP tra�c analysis and
cannot be generalized to all link streams. [CHN08] proposes an event detection
method for search engine queries: based on query topics clustering in a 2-d
space, it is able to �nd real-world events which happened in 2006 like the Los
Angeles Marathon. This method based on textual analysis thus cannot be
generalized to all link streams and is therefore not relevant to our problem
de�nition.

4.1.4 Conclusion

Few methods deal exclusively with link streams. The state of the art relies on
outlier detection in static graphs, and in series of graph snapshots observed
at a given frequency. Our study on link streams is thus original. Moreover,
existing methods address various problem categories:

• the detection of anomalous graphs in a series of graph snapshots.

• the detection of anomalous evolution of sub-graphs or communities.

• the identi�cation of nodes and links responsible for abnormal evolution
of the complete or partial graph.

As we stand in an exploratory approach with no knowledge on the observed
system, we do not want to make any hypothesis on its behavior, and attempt
to de�ne the most generic framework possible. This way we may eventually
adapt it to more speci�c questions like the dynamics of communities. As such
studies presuppose the existence of observable communities (hence a system
property), we put these questions aside to focus on a more general setup: a
generated time series describes the evolution of a graph property over time,
and our goal is to detect signi�cant changes in it. Current methods of time
series analysis are not acceptable though, because they usually rely on a �xed
threshold parameter (found by a prior knowledge) to spot as outlier the values
beyond the threshold, or they rely on a time series model (e.g. arma) to
spot as outliers the values which diverge too much from the model (given a
threshold). In the following Section, we propose a generic method to analyze
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univariate samples and time series with no prior hypothesis on data, which
can be applied to time series of link streams statistics.

4.2 Outskewer

We propose a new unsupervised univariate method that reliably detects mul-
tiple outliers on either static or temporal datasets given the following set-
ting, which is known to be challenging: values may not be independent and
identically distributed; we have no prior knowledge of the underlying process
which generated the data, or of the probability distribution; in time series,
regime changes may exist due to the evolution of the normal behavior (non-
stationarity), and also outlying values which deviate globally or locally from
the main trend. We �nally want an on-line method for real-time monitoring.

Our method relies on the notion of skewness of distributions (see Section
4.2.1) and its evolution when extremal values are removed, which we call
skewness signature; we use this to detect outliers in multisets of numbers and
in time series. Our method has the following advantages: (a) it uses a novel
approach based on the study of the skewness of distributions, and is easy to
interpret; (b) it looks for outliers only when the notion of outlier is relevant
in the considered dataset; (c) it is easy to use, as the only parameter is the
size of the time window for multi-scale analysis of time series, and (d) it may
be used on-line.

4.2.1 Skewness Signature

We consider a multiset (i.e. a set in which members may appear more than
once) X of n values. The distribution of these values is the fraction Px, for
each x, of values in X which are equal to x. Such distribution samples are
basically described by their mean x̄ =

∑
x∈X(x/n) and standard deviation

σ =
√

1/(n− 1) ·
∑

x∈X(x− x̄)2. Going further, the sample skewness is a
measure of distribution asymmetry, and can be estimated by:

γ(X) =
n

(n− 1)(n− 2)

∑
x∈X

(
x− x̄
σ

)3

.

Intuitively a negative skewness indicates a tail on the left of the distribution
more pronounced than the one on the right, while a positive skewness means
the converse, see Figure 4.8. If no tail exists, i.e. all values are equal, γ(X)
is unde�ned because σ = 0. If both tails exist on each side and are equal,

γ(X) = 0. For normal distributions (Px = 1
σ
√
2π
e−

1
2(x−µσ )

2

), γ(X) = 0, while

for Pareto distributions (Px = aba

xa+1
where 0 < b ≤ a), γ(X) > 0. Examples

of unimodal skewed distributions are shown on Figure 4.8.
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Figure 4.8: Example of negative (left) and positive (right) skewed distribu-
tions.

The skewness has the interesting feature to be in�uenced by values
which are far from other values, because it is based on the cubed distance
from values to the mean. Hence its value changes a lot if they are removed.
We show now how to use this feature for outlier detection.

We consider the evolution of the skewness of a distribution of values in a
multiset X when extremal values are removed one by one from X, which we
call the skewness signature of X. The extremal value of X, denoted by e(X),
is:

e(X) =

{
max(X) if γ(X) > 0, and
min(X) otherwise.

In practice, the skewness is almost never equal to zero, hence always choosing
min(X) in the case where γ(X) = 0 induces a negligible bias.

We de�ne a series of multisets as follows: X0 = X, Xi = Xi−1\{e(Xi−1)},
for all i > 0. In other words, Xi is the multiset obtained by removing one
occurrence of the largest (resp. smallest) value of Xi−1 if the distribution of
values in Xi−1 has a positive (resp. negative or zero) skewness. Finally, we
de�ne the skewness signature as the function s(p,X) = γ(Xbp·nc), where n is
the size of X and Xbp·nc is the multiset obtained from X by removing bp · nc
extremal values, i.e. a fraction p of extremal values.

For example, if X = {-3, -2, -1, -1, 0, 1, 2, 3, 7}, values 7, 3, 2, -3, 1, -2, 0
are removed in this order2, and the values of the skewness signature are 1.09,
0.22, 0.17, 0, 0.40, 0, 1.73.

The skewness signature may be used to �nd outliers in unimodal distribu-
tions because outliers lie at their extremities, and because skewness is sensitive
to the removal of outliers.

4.2.2 Our Method

4.2.2.1 Outlier Detection in Samples

Our method relies on the following hypotheses: outliers are extremal values
which cause the skewness to be far from zero; the skewness signature converges
to zero (i.e. the distribution becomes more symmetric) when outliers are

2Values are removed until γ(X) is not computable: our skewness estimator is only
relevant for datasets with at least 3 values.
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Figure 4.9: Example of 50 values with 7 outliers and 5 potential outliers
(counter-clockwise from top-left): cumulative distribution; absolute values of
the skewness signature; zoom on it; absolute values of skewness for which
outliers and potential outliers are detected. We obtain t = 0.14, T = 0.48,
t′ = 0.16, T ′ = 0.24.

removed one by one. Therefore, the distance of the skewness to zero can be
used to identify outliers. Extremal values which cause this distance to be too
large should be classi�ed as outliers. But how is it possible to determine that
the distance is too large without making any hypothesis on the dataset?

We propose to consider the distance relatively to the proportion of ex-
tremal values removed: the more extremal values removed, the closer to zero
the skewness is expected to be. For any p ∈ [0; 0.5] we say that s is p-stable
if and only if |s(p′, X)| ≤ 0.5 − p, for all p′ ∈ [p, 0.5]. We do not consider
values of p larger than 0.5 because this corresponds to a removal of more than
half of all values; in such situations, the skewness has little to do with the
original data, and it may vary much if too many values are removed.

Let t be the smallest value such that s is t-stable, and T be the largest
value such that s is T -stable. When s is never p-stable for any p, t and T
do not exist. This case indicates that it is irrelevant to look for outliers in
the given dataset, according to our notion of outlier; in this case our method
classi�es all values in the dataset as unknown. Otherwise we �nd outliers as
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follows.
We denote the smallest and largest numbers in Xi by mini = min(Xi)

and maxi = max(Xi). Then, minbp·nc (resp. maxbp·nc) is the smallest (resp.
largest) remaining value when a fraction p of all values has been removed. Let
t′ (resp. T ′) be the smallest value of p such that |γ(Xbt′·nc)| ≤ 0.5 − t (resp.
|γ(XbT ′·nc)| ≤ 0.5−T ). Our method concludes as follows: below minbt′·nc and
above maxbt′·nc, values are outliers; between minbt′·nc and minbT ′·nc included
(resp. maxbt′·nc and maxbT ′·nc), values are potential outliers; values are not
outliers otherwise. Notice that when t′ = T ′, minbt′·nc = minbT ′·nc (resp.
maxbt′·nc = maxbT ′·nc). In this case, values equal to minbt′·nc (resp. maxbt′·nc)
are potential outliers. Figure 4.9 illustrates our method on an example.

4.2.2.2 Dynamic Extension for Time Series

Our method may be used on time series representing the evolution of a sys-
tem's property. Let {x0, x1, ..., xn} be a time series. We consider the multisets
which contain w values: X i = {xi−w+1, ..., xi}. Any value xi of the series be-
longs to X i, X i+1, ..., X i+w−1. We use our method on all these w multisets,
and consider the �nal class of xi to be the one which occurs most often among
these w classi�cations. In case of equality, we give priority of outlier upon po-
tential outlier upon not outlier, because we prefer to detect too much outliers
than too few. This choice is straightforward but can be modi�ed to lower the
risk of false positives detection. Outliers in that case are called events.

4.2.3 Experimental Validation

The validation of outlier detection methods is di�cult because of the vari-
ous outlier de�nitions, hypotheses and use cases [Bg05]. Labelled datasets
also raise the issue of prior criteria to label the data. We consider that our
method should detect outliers, if any, if the notion of outlier is relevant for the
given dataset. In particular, we consider for our experimental validation the
following cases: (a) distributions like Power laws (e.g. Pareto and Zipf's law)
commonly contain extremal values far from the mean (i.e. heterogeneous),
so it is erroneous to consider them as outliers, moreover heterogeneous dis-
tributions are asymmetrical so our method should conclude that looking for
outliers in them is irrelevant; (b) normal distributions are symmetrical and
extremal values far from the mean are uncommon (i.e. homogeneous), so no
outlier should be detected but these extremal values when they occur; (c)
half-normal distributions (Px = 2a

π
e−x

2a/π, where a > 0), which are basically
the absolute of normal distributions with mean equal to 0, are asymmetrical
but homogeneous, so this case is ambiguous and should be unclear for our
method as well; (d) symmetric Pareto distributions (Px = aba

2
|x|−1−a1|x|>b,

where 0 < a < 2 and b > 0), which are basically the mirror symmetric of
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Pareto distributions about the vertical axis, are symmetrical but heteroge-
neous, so we study the behavior of our method in this case.

We �rst study the relevance of our method on these four distributions,
and we study the e�ect of the sample size. Then we study the performance of
our method to detect outliers, and evaluate the rate of true outliers and false
outliers detected. We �nally study the behavior of our method when regime
changes occur in temporal data.

4.2.3.1 Relevance

Our method is applicable if and only if the given dataset is p-stable for at
least one value of p between 0 and 0.5. A necessary condition for this is
that |s(0.5, X)| < 0.5. We show in this section that this is true for normal
distributions (even with a few outliers) and false for Pareto distributions,
which is the expected behavior: normal distributions are symmetrical and
homogeneous and Pareto distributions are asymmetrical and heterogeneous.

We study the behavior of s on normal N (0, 1) and Pareto (shape=6, loca-
tion=2) probability distributions3. For each one, we randomly generate 1,000
samples of 100 numbers to obtain skewness signatures; we compute and plot
the skewness signature of each sample in Figure 4.10. We observe that the
values of normal signatures oscillate around zero, whereas the values of Pareto
signatures globally decrease and are above zero until p ≈ 0.5. The cumulative
frequency distributions of s(p,X) on Figure 4.10 con�rm these observations.
We also computed the skewness signatures of normal and Pareto distributions
with various parameters, and also various symmetrical distributions4 which
we do not present here due to space constraints. All of them exhibit patterns
similar to normal signatures.

It is clear that the probability for Pareto skewness to be within [−0.5; 0.5]
increases with p. We estimate P(|s(0.5, X)| < 0.5) on 1,000 Pareto and 1,000
normal samples. We obtain that this probability is equal to zero for Pareto
samples, and is greater than 0.95 for normal samples. We conclude that our
method is able to characterize symmetrical and homogeneous versus asymmet-
rical and heterogeneous distributions at a con�dence level of 0.95. Moreover,
the addition of some outliers in these distributions produces almost the same
signatures than without outliers, because extremal values are �rstly removed.
Therefore existing outliers do not notably change the characterization.

Let us study the evolution of s(0.5, X) when the sample size n varies.
We generate 1,000 normal and Pareto samples for each value of n between
3 and 1,000, then compute s(0.5, X) for each sample, and we �nally obtain
the quartiles, min and max of the values of s(0.5, X) at each n. We observe
in Figure 4.11 that the results converge to zero for the normal distribution,

3Other parameters lead to similar results.
4Cauchy, Laplace, some Gamma and Weibull distributions.
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Figure 4.10: Quartiles, min and max of s(p,X) on 1,000 normal (top)
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Figure 4.12: Fraction of samples for which s is never p-stable as a function
of the sample size n, for normal (top left), Pareto (top right), half-normal
(bottom left), and symmetric Pareto (bottom right) distributions.

and to ≈ 0.3 for the Pareto distribution. Thus, increasing n should lead to a
better characterization.

We verify this hypothesis by evaluating the rate of samples where s is never
p-stable, for 1,000 normal and Pareto samples for each size n. We observe in
Figure 4.12 that it seems to follow a fast decrease for normal samples. For
n ≥ 37, less than 5% of normal samples are incorrectly characterized, and less
than 5%� for n ≥ 55. We also observe that it increases with n for n > 50 on
Pareto samples. The minimum is 79% at n = 52, is around 85% at n = 100,
around 95% at n = 240, and above 99.5% for n > 500.

We also evaluate this rate for half-normal and symmetric Pareto samples.
We observe in Figure 4.12 that it seems to follow a fast decrease for symmetric
Pareto samples, but a slow decrease for half-normal samples. This result is
not surprising because the theoretical skewness of half-normal distributions5

is ≈ 1, and the skewness decreases slowly when extremal values are removed
one by one. As expected, our method has unclear results in this case.

We conclude that our methods characterizes samples with size 100 very
well, and is excellent on samples of size 1,000. Our method also considers that
the symmetric Pareto distribution should contain no outlier.

In addition, we study the skewness range within which our method consid-

5γ = (
√
2 · (4− π))/(π − 2)3/2
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Figure 4.13: Fraction of samples for which s is never p-stable as a function of
the skewness for Gamma samples (shape varying from 0.3 to 20).

ers s to be p-stable at least once. We vary the shape parameter of a Gamma
distribution (thus its skewness) to incrementally generate 1,000 samples of
100 numbers for each skewness value, from Pareto-like samples to normal-like
samples, and compute the rate of s that are p-stable at least once for each
skewness. We remind that s is p-stable if and only if |s(p′, X)| ≤ 0.5− p, for
all p′ ∈ [p; 0.5]. The result in Figure 4.13 shows that s is always p-stable at
least once for samples of skewness below 1.5, and never p-stable for samples
of skewness above.

4.2.3.2 Performance

We study the e�ect of the sample size on outlier detection in normal, Pareto,
half-normal and symmetric Pareto distributions. We generate 1,000 samples
for each distribution and size n, then we detect outliers on each sample. Nor-
mal and Pareto samples contain no outlier by de�nition, so no outlier should
be detected; they are called false outliers.

We observe in Figure 4.14 that the rate of false outliers is low, with at
most 3% for the normal distribution and at most 5% for Pareto. This rate
decreases when n increases to be less than 1%� above n ≈ 100 for the normal
distribution, and above n ≈ 500 for the Pareto distribution. We also evaluate
the rate of outliers detected for the symmetric Pareto distribution: reaching
5% at most, it seems to follow a fast decrease when n increases, to reach
1%� at n ≈ 1000. For the half-normal distribution, this rate is between 8%
and 12% for n > 100, and is consistent with the fraction of samples for which
s is never p-stable. We conclude that our method detects few false outliers
on samples of size 100, and almost none on samples of size 1,000, which is an
excellent performance; it rarely detects outliers on symmetric Pareto samples,
which is the expected behavior regarding the characterization.

Now we estimate the ability to detect true outliers by generating a sample
of size 1,000 composed of a normal sample of variance equal to 1 and a uniform
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Figure 4.14: Fraction of sample points classi�ed as outlier as a function of
n for normal (top left), Pareto (top right), half-normal (bottom left), and
symmetric Pareto (bottom right) distributions.

noise ratio

ra
tio

 o
f e

ac
h 

cl
as

s 0

0.5

1

0

0.5

1

0

0.5

1

●●
●

●

●
●●

●

●

●

●
●●●

●

●

●

●●●●

0.002 0.01 0.1 0.5

range 10
range 50

range 100

outlier potential outlier ● not outlier

Figure 4.15: Ratio of noise points detected as outliers, potential outliers and
not outliers as a function of the proportion of noise, for di�erent noise ranges.



94 Chapter 4. Automatic Event Detection

sample (called the noise) of size varying from 0.2% to 50% of the total number
of values. We then count the number of noise points which are classi�ed as
outliers and potential outliers. It is the worst case because the initial skewness
is close to zero and outliers are uniformly distributed around the mean with
no gap between them and the rest of the distribution. This is also a way
to evaluate the robustness of our method against a problem known as the
masking e�ect [BK85], occurring when some outliers are not detected because
of the presence of other outliers close to them.

We generate uniform samples of various ranges (i.e. largest minus smallest
value). The range of normal samples of size 1,000 is roughly 6 and the range
of samples of size 106 is roughly 10, so we select noise ranges larger than this:
10, 50 and 100. We observe in Figure 4.15 that noise points very close to
the signal points (range 10) are classi�ed as potential outliers. Larger ranges
increase the number of detected outliers. We also see that the lower the noise,
the higher the power to detect true outliers. However almost no outlier can
be detected with more than 10% of uniform noise.

4.2.3.3 Regime Changes

Regime changes are change points in time series that are observed by sudden
changes of the mean. When they occur we are faced with non-trivial distribu-
tions. We study now how our method deals with them. We simulate a stream
of values by generating two normal samples of size 110 with mean equal to
0 and 3 respectively. t indicates the order of appearance of the values. Fig-
ure 4.16 shows our method applied dynamically with a sliding window of size
w = 100. The outlier status of values is unknown at the beginning. At the
end, none of them are outliers except one potential outlier. Our method is
hence robust against regime changes. Notice that 72 values are classi�ed as
potential outliers when our method is applied to the whole dataset at once.

4.2.4 Real-World Applications

In this Section we show the application of our method to three various real-
world datasets. See Section 2.2 for the full description of the datasets.

4.2.4.1 French Population in the 20th Century

This �rst dataset is not related to graphs. It is the time series of the evolution
of the French population during the 20th century. In order to detect anomalous
increase rates of the population, we compute the di�erence over the years, and
apply our method on this time series. We see in Figure 4.17 that the drops
happening during the two world wars (1914-1918 and 1939-1945) are clearly
detected, as well as the �baby boom� e�ect in the sixties.
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Figure 4.16: From top-left to bottom-right, evolution of the outlier status of
values in a time series of size n = 220, with one regime change (mean value
changing from 0 to 3). Vertical lines indicate the time window boundaries
between which outliers are detected.
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Figure 4.17: Di�erence of the number of inhabitants compared to the previous
year in France during the 20th century.

4.2.4.2 Dynamics of Internet Topology

The second dataset is a series of measurements of IP addresses observed in
the network neighborhood of a computer. We applied our method to this
Internet dataset, which is a series of graphs.

The most natural idea to detect events in the dynamics captured by a
radar measurement from a given monitor certainly is to study the number Ni

of nodes observed at each round i. We plot it for a typical case in Figure 4.18.
Clear outliers appear under the form of sharp decreases of Ni for some values
of i, but this brings little information because they may be due to losses of
connectivity by the monitor. Except from these statistical outliers, which are
detected by our method, the number Ni of nodes observed at each round i in
Figure 4.18 is very stable.

We thus compute the number of distinct nodes seen in �ve consecutive
rounds to avoid the outliers which only reveal losses of connectivity in one
round of measurement. We observe events in the dynamics shown in Fig-
ure 4.19, where many decreases existing in Figure 4.18 have disappeared.
Figure 4.19 is well centered around a typical value, but still exhibits sharp
increases and decreases. This means that these outliers, which were also de-
tected by our method, may reveal real events in the dynamics of this network.
Outliers above the typical values indicate a sudden appearance of many new
nodes in the network, while outliers below the typical values may indicate
longer losses of connectivity or a sudden disappearance of many nodes.

Our approach is hence relevant for studying the evolution of ego-centered
views of the internet topology, and for raising automatic alerts in real-time
when signi�cant changes of connectivity occur.

4.2.4.3 Search Engine Queries

We �nally applied our method on the P2P dataset, which is a link stream.
In order to study the number of queries related to the �lm Harry Potter

and the half blood prince, we �ltered the queries to retrieve only those which
contain the word sequence �half blood prince�. Then for every 10 minutes we
counted the number of queries made during the last hour of measurement.
Outliers were �nally detected using a sliding window of size w = 1, 008 (7
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Figure 4.18: Number of nodes at each round of radar measurement; outliers
(i.e. rounds of measurement) are detected using a sliding window of 100
rounds (25 hours).
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Figure 4.19: Number of nodes in the union of 5 consecutive rounds of radar
measurement; outliers (i.e. union of 5 rounds of measurement) are detected
using a sliding window of 100 rounds.
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Figure 4.20: Number of outliers and potential outliers each day (top) and each
week (bottom) in the number of search queries containing the word sequence
�half blood prince�.

days) to capture meaningful events at the scale of one week. We plot in
Figure 4.20 the number of outliers and potential outliers observed each day
and each week. The scale of a day seems adequate enough for observing fast
increases of user queries.

We identify three main events: we observe many values marked as potential
outliers during the week after July 15, 2009, when the �lm was out in theatres.
Then an unknown event appears from August 23 to 25, when almost all values
are outliers. The last automatically detected event, from October 10 to 12,
coincides with the release of a pirated version of the �lm on October 10 on
BitTorrent, another P2P network, as discovered by searching on https://

thepiratebay.se. We suppose that this release was made from a promotional
DVD, because the commercial DVD was released on December 7 only; we
observe no noticeable event on this day.

Our approach is hence relevant for studying logs of search queries, and for
detecting bursts of queries related to a same topic.

4.3 Conclusion

We have proposed the Outskewer method to detect statistically signi�cant
outliers in samples and events in time series. Outskewer uses a novel approach
based on the study of the distribution skewness. Our method is easy to
interpret because values are classi�ed as outliers, potential outliers or not
outliers. The class of all values is unknown when the notion of outlier is not
relevant in the considered dataset. Our method is also easy to use because it
requires no prior knowledge on the data, and the only parameter is the size
of the time window for multi-scale analysis of time series. Moreover, it may
be used on-line to detect events on the �y.

We have applied it to three datasets representative of diverse use cases:
evolution of the French population during the 20th century, evolution of ego-
centered views of the internet topology, and logs of queries entered into a

https://thepiratebay.se
https://thepiratebay.se
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search engine. We clearly identify events in the evolution of ego-centered
views of the internet topology as shown in Figure 4.18 and Figure 4.19. We
also automatically detect the release of a pirated version of a �lm in a P2P
system, through the queries entered by users in the search engine, as show in
Figure 4.20.

The strengths of our method are its statistical reliability with very few
data points (100 data points are enough), and its ability to deal with regime
changes in time series as shifts or normality. However we still have to study
its algorithmic complexity.

Our method opens the way to further investigation of the use of the skew-
ness to detect multiple outliers in samples, and to detect events at di�erent
time scales in time series. But more importantly, when applied to a time
series of a graph statistic, the detected outliers provide time points of interest
to be investigated later. Outskewer may therefore be used to process large
link streams before a more local visual analysis, focused on these moments.
It is thus mandatory to characterize the behavior of our method on such data
by studying the impact of time unit and time scale on the detected events.
This is the matter of the following Chapter.
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In the previous Chapter we have proposed an automatic method called
Outskewer to detect statistically signi�cant events in time series. We have
rigorously validated it, and applied it to three di�erent datasets.

In this Chapter we generalize the application of Outskewer to link streams.
This generalization is not trivial and raises multiple questions on the way
times series that show the evolution of graph statistics are generated, and on
their characterization for the purpose of event detection. In particular, we
show that traditional time units like the second and the hour may hide events
because of the impact of cyclical human activity, and we introduce the notion
of intrinsic time , based on link appearances, to avoid this issue. We also
study the impact of time scale on event detection, which is related to the
characterization of link streams. We �nally apply our (generalized) method
to the Github dataset1.
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Figure 5.1: Example of graph snapshots and their aggregated
graph [TMML11].

5.1 Related Work

5.1.1 Notions of Topology Dynamics

Notions related to the topology of static networks (like node degree, central-
ity measures, clustering and paths) have been developed before the notions
related to dynamic networks. When studying sequences of graph snapshots
(see Figure 5.1), researchers have naturally started to observe the evolution
over time of these static graphs statistics. For instance [LKF05] has studied
a range of di�erent networks using snapshots of static graphs, from several
domains, and the authors have focused speci�cally on the way fundamental
network properties vary over time. They show that (i) networks are becom-
ing more dense over time, with increasing average degree (and hence with
the number of edges growing super-linearly with the number of nodes); (ii)
the densi�cation seems to follow a power-law pattern; (iii) in many cases the
e�ective diameter decreases as the network grows.

Another example is the analysis of a dynamic social network comprising
43,553 students, faculty, and sta� in a large university [KW06]. Interactions
between individuals are inferred from time-stamped e-mail headers recorded
over one academic year and are matched with a�liations and attributes. The
authors compute daily probability of links and triangles on a sliding time
window of 60 days. They correlate the evolution of these indicators to di�erent
populations, and �nd that network evolution is dominated by a combination
of e�ects arising from network topology itself and the organizational structure
in which the network is embedded. However such e�ects are not studied.

1See Section 2.2 for the description of the github dataset.
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The common notions of static networks are not su�cient to capture the
dynamics of networks over time [TLS+13]. Temporal graph metrics can lead
to new observations of behaviors at various scales, and provide a better under-
standing of biases induced by measurement parameters. Multiple appropri-
ate notions have been introduced, for instance the journey (that extends the
notion of path in static networks) [SQF+11,XFJ03,PS11]. Other notions in-
clude temporal distance metrics [TMML09], contact duration [ISB+11], inter-
contact durations [EMS04,CFL09,BC13], temporal reachability graphs [TMML10,
WDdACG12a], temporal motifs [KKK+11], temporal communities [SG12],
temporal node centrality [KA12], link persistence [NTM+13], among others.
Extensive surveys on temporal metrics are available [CFQS11,HS12].

5.1.2 Time Scale

Time scale (or time resolution) is a critical parameter in many dynamic net-
work analysis methods. Unfortunately, �ne-grained temporal connectivity
data is often di�cult to obtain for real social systems. The traditional ap-
proach to study network dynamics in sociology (see, for instance, [Was94])
tends to rely heavily on interaction data self-reported by study participants,
which exhibit signi�cant bias and noise [Mar90]. Several recent studies in
physics and computer science have utilized web-based or other indirect sources
of dynamic social network data [OdC04,VOB05,LKF05,HMPKE07,BWS06].
In general, empirical studies convert the available temporal data into a short
sequence of non-overlapping network snapshots). However only a few studies
analyze the impact of time resolution on the estimation of di�usion processes
and topological properties.

Many studies indeed assume a speci�c time scale for the measurement
of statistical properties [AZY11, AMF10a, LMO08, ZLBM06]. As [Tho12]
noticed:

�Too short a window length may result in high variance and sample
data that is not representative of the underlying graph structure;
too long a window length may have a smoothing e�ect that hides
shorter-term deviations in behavior. Furthermore, di�erent time
granularities may be appropriate for di�erent nodes or edges within
the same network.�

[CE07] is a study of a highly resolved data set of a dynamic proximity
network of 66 individuals [EP06]. The authors show that the topology of
this network evolves over a very broad distribution of time scales, that its
behavior is characterized by strong periodicities driven by external calendar
cycles (see Figure 5.2), and that the conversion of inherently continuous-time
data into a sequence of snapshots can produce highly biased estimates of
network structure. They suggest a method to �nd an optimal time scale
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Figure 5.2: The (a) mean degree and (b) mean clustering coe�cient of the
Reality Mining phone call network [EP06], as a function of time for snapshot
rates ∆ = {1440, 480, 240, 60, 15, 5} (minutes) during the week of 11 October
through 17 October for the core 66 subjects. As ∆ grows, under-sampling
clearly averages out higher frequency �uctuations [CE07].
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Figure 5.3: Aggregated network at di�erent time scales. Links that participate
in triangles in the �nal 6-month aggregated network are colored red, while the
rest are black [KKB+12].

that smoothes out high frequency variation while preserving important low
frequency structural patterns.

[Pap06] also computes an optimal scale for pattern detection in time series.
Assuming speci�c properties, [ZZJ+08] explores a multi-resolution approach
to anomaly detection for the internet.

The problem of time resolution is closely related to the sampling rate
during a measurement. Using a simulation of a social dilemma game over a
dynamic network of various resolutions, [CPN+13] shows that the resilience
of cooperation among people is hindered when high-resolution time-varying
graphs are considered. In particular, high temporal resolution strongly af-
fects the persistence of cooperation in the paradigmatic social dilemmas. As
a result, cooperation can emerge and persist also for moderately high time
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resolutions. Thus, not only temporal resolution but also temporal correla-
tions across consecutive snapshots are fundamental for cooperation to emerge.
These �ndings suggest that the frequency at which the connectivity of a given
system is sampled has to be carefully chosen, according to the typical time-
scale of the social interaction dynamics. For instance, as stock brokers might
decide to change strategy after just a couple of interactions, other processes
like trust formation in business or collaboration networks are likely to be bet-
ter described as the result of multiple subsequent interactions. Both the over-
sampling and the under-sampling of a time-evolving social graph and the use
of the �nest/coarsest temporal resolution could substantially bias the results
of a game theoretic model played on the corresponding network. [RLNZ09]
raises as well the issue of downsampling time series for storage, while preserv-
ing the capacity to detect anomalies.

Di�erent conclusions may therefore be reached depending on the particu-
lar time window over which interactions are aggregated and the size of that
window. Thus, determining the appropriate window used to de�ne a network
is critical. Choosing the correct window size can be done by measuring lag
times between two connections of the same nodes (lagged association rates)
as we have seen before [CE07]. Alternatively, window size can be chosen by
determining when time series of network statistics constructed from di�erent
temporal subsets of the data become stationary [CBWG11]. Also, [BM10] pro-
poses a methodology to estimate the size of the observable window for a rigor-
ous characterization of any network property. Another approach is to use prior
knowledge about natural time scales in the system [LMS+08,CVdBB+10].

Unfortunately, there is currently no consensus on the best method for
choosing a window size, because the notion of optimal time scale is much
more complex. [KKB+12] has investigated the structural features of mobile
telephone call networks aggregated over aggregation intervals of increasing
lengths. The results show that short aggregation intervals yield networks
where strong links associated with dense clusters dominate; the seeds of such
clusters or communities become already visible for intervals of around one
week. Degree and weight distributions are seen to become stationary around
a few days and a few weeks, respectively. An aggregation interval of around 30
days results in the most stable similar networks when consecutive windows are
compared. For longer intervals, the e�ects of weak or random links become
increasingly stronger, and the average degree of the network keeps growing
even for intervals up to 180 days. The results show that the placement of
the time window a�ects the outcome: for short windows, di�erent behavioral
patterns play a role during weekends and weekdays, and for longer windows
it is seen that networks aggregated during holiday periods are signi�cantly
di�erent. An exploratory analysis is therefore necessary to determine the
time scale and time placement of the time window.
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Figure 5.4: Distribution of the response time until an email message is an-
swered. (Inset) The same distribution is measured in ticks, i.e., units of mes-
sages sent in the system. Binning is logarithmic. The solid lines follow ∆−1t
and are meant as guides for the eye [EMS04].

5.1.3 Time Unit

Alternative time units are proposed to overcome the issue of the �wall-clock�
time units. In [EMS04] the dynamics of 200,000 e-mails is studied, involving
10,000 users during 83 days at a university. The authors have de�ned ∆t as
the time delay between a message going from A to B and a response going
from B to A. Although no clear power law is evident in Figure 5.4, they claim
that the behavior can be approximated by P (∆t) ≈ −1. The appearance
of a peak ranging from ∆t = 16 hours to ∆t = 24 hours can be explained
by sociological behavior involving the time (usually 16 hours) between the
moment when people leave work and when they return to their o�ces. This
(already weak) peak disappears when considering a �tick � of the system (i.e.,
a message sent) as the basic time unit. Choosing the basic tick of the clock
(the sending of a message in the network) as a variable time unit smoothens
many features (as in Figure 5.4 Inset). In particular, the slowing down of the
network over nights and weekends is eliminated. This result is particularly
important to our study, because as we explain later, we also face cyclical
behavior of temporal properties in our datasets.

More recently, [GPCB13] has focused on the probability distribution of
arrival times for the di�usion process (SI model) unfolding over a temporal
network. In terms of �wall-clock� time, the arrival time at a given node is
de�ned as the time elapsed between the start (seeding) of the di�usion process
and the time when the process reaches the chosen node. [PBC+11] has shown
that the distribution of these arrival times is extremely sensitive to several
heterogeneities of the empirical data with regards to the seeding time. In
general, it displays strong heterogeneities due to the non-stationary and bursty
behavior of empirical temporal networks that cannot be captured by simple
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statistical models. Thus, the authors have shifted to a node-speci�c de�nition
of �time�: each node is assigned its own �activity clock � that measures the time
that this node has spent in interaction or, similarly, the number of contact
interactions that it has been involved in. The �time� measured by this clock
does not increase when the node is isolated from the rest of the network.
The �arrival time� of the epidemic process at a given node is de�ned as the
increase of its activity clock reading from the moment the di�usion process
is seeded to the time when it reaches the node. Arrival times discard by
de�nition many temporal heterogeneities of the empirical data and usually
exhibit a well-de�ned distribution [PBC+11] that is robust with respect to
changes in the starting time of the process and across temporal networks of
human contact measured in di�erent contexts.

To conclude, we have seen that the characterization of network dynamics
is an important task in the perspective of event detection. Many studies has
been done on the characterization of graph snapshots dynamics using metrics
for static graphs. These notions are however limited, and new ones have
been proposed to take time directly into account. The choice of time scale
is an issue as it impacts measurements, but no consensus has been found on
an optimal time scale and no study has been done on its impact on event
detection. Adjacent time windows raise the additional issue of time position,
e.g. windows starting at midnight would lead to di�erent �ndings than those
starting from mid-day. Finally, new time units have been proposed based on
minimal changes in the network and on local time units, which provide ground
for our work.

5.2 Generalization of Outskewer

In this Section we study the characterization of link streams in the perspective
of generalizing Outskewer to event detection in network statistics. We have
seen previously that time unit and time scale raise unresolved issues for net-
work measurement using time windows, and the impact of these parameters
remains unknown for event detection. We thus propose to study the impact of
time unit and time scale in a time series of a network statistic computed over a
sliding time window. Our �ndings will help calibrate network measurements,
within which Outskewer may detect regular and abnormal behaviors.

5.2.1 Use of a Sliding Time Window

Three classical approaches exist for the study of a network property in a
dynamic context. The �rst one consists in studying the growth of the graph
over time, displayed in a cumulative way. For instance the cumulative number
of nodes is shown in Figure 5.5, where the number of nodes is plotted as a
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Figure 5.5: Number of distinct nodes as a function of total number of links.

Figure 5.6: Stream of appearing links split into contiguous time windows.

function of the total number of links observed since the beginning of the
capture. This plot displays a regular growth with a regime change at the end,
but we obtain little information on the underlying dynamics. The second
approach consists in splitting the stream using contiguous time windows to
build a series of sub-graphs, as illustrated in Figure 5.6. We then compute
the selected statistical property on each sub-graph. For instance, the number
of nodes of each sub-graph captured over time is shown in Figure 5.7. This
plot displays a regular trend and a few spikes, however we may miss more
subtle events and the precise moment of their appearance. So we use a third
approach, which is the generalized version of this approach. It consists in
extracting consecutive sub-graphs from a sliding time window, as illustrated
in Figure 5.8.

Our approach is as follows: given a link stream F (as de�ned in Sec-
tion 2.1), we compute the time series Sw of the graph statistic Siw

2. If w is a
function of time, e.g. a value in seconds, the sliding window is the multiset
which contain all links observed during w seconds.

As far as we know, all studies on evolving networks which make use of a
sliding window de�ne its width in seconds. The apparent simplicity of this
approach brings little attention because it is easy to set up and involves a
common time unit. However it raises non-trivial questions (detailed later)
which are not addressed in most studies.

The use of a sliding window for the analysis of graph dynamics raises
several questions: which unit (traditional time-based or link-based) should we

2A relevant property for bipartite graphs is studied in Section 5.3
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Figure 5.7: Number of distinct nodes in the union of 10,000 consecutive links,
computed every 10,000 links, as a function of the number of links.

Figure 5.8: Sliding time window over a stream of appearing links.

use to detect events? Moreover, what is the impact of the window length on
the evolution of the studied property? In the following sections we empirically
study the impact of these di�erent concepts of time as well as various time
scales on a trivial statistical property: the number of nodes observed in the
network over time. We aim at determining the consequences of such choices
on our ability to characterize dynamics, and to detect statistically signi�cant
events. We have found that these parameters have an important impact on
the observed results.

5.2.2 Choice of the Time Unit

5.2.2.1 Intrinsic vs Extrinsic Time (Time Unit)

Time is a controversial concept that one can see as a dimension in which
changes occur in sequence. In this perspective, time is considered as absolute,
i.e. changes happen independently from the �ow of time [New87, Kan81].
But if we consider time as a relative concept, time then depends on space.
This debate remains open, however in practice time is experienced as relative
because we can only measure it through the relative movements of bodies
(in space). Many techniques exist to measure it. The unit adopted by the
International System of Units is the second, which is de�ned as the transition
between two states of the caesium 133 atom [dlCdM06]. This unit is therefore
related to movements measured in the physical space.

However information networks make the physical space transparent by con-



5.2. Generalization of Outskewer 111

necting elements whatever their geographical distances. In graph theory, the
distance between two nodes (also called geodesic distance) is indeed de�ned
as the number of links in a shortest path connecting them. Under the hypoth-
esis that network distances are independent from geographical distances, we
consider the physical space as absolute from a network point of view. Con-
versely if we reject this hypothesis and correlate network distances to physical
distances, the observation of such e�ects may hide the e�ects which are not
related to the physical space. In the �rst case, measuring distances with phys-
ical units is not relevant. In the latter case, it brings little information on the
network itself. This question is di�cult because e�ects have been found even
for social networks and the Web, which are designed to abolish the physi-
cal distances between people. For instance, there is a higher probability on
Facebook to be friend with someone from the same country [UKBM11]. On
Github, open source developers based in North America receive a dispropor-
tionate amount of attention [TH10]. These studies shed light on the way the
geographical location of users in�uences the network, but they do not address
the reciprocal question of how the network allows users to be connected to one
another despite geographic boundaries. Hence existing works do not study the
endogenous e�ects at stake in the network (i.e. which come from inside).

Notwithstanding the high potential impact of a time unit derived from the
physical space, most studies use the absolute time in evolving networks: sta-
tistical properties are measured as a function of the second and its derivative
units (e.g. days and years). As a consequence, they detect exogenous activi-
ties on these networks (i.e. which come from outside) [AG11,PBC+11,WD-
dACG12b]. For instance, click-stream data of Web tra�c naturally reveal a
day-night pattern in the network because of usual human activity [MMF+08].
While this �nding may be of interest, it provides more information on the users
activity than on the network itself. Such trends may hide the patterns which
are only related to the network, preventing us to characterize the endogenous
dynamics of the network.

We thus introduce a concept of relative time in a network point of view,
called intrinsic time of the network, as opposed to the extrinsic time ,
which is a concept of absolute time. Let the extrinsic time of the network be
the time measured using the second. We call it extrinsic because its �ow is
independent from the changes that occur in the network. Let the intrinsic
time of the network be the time measured by the transition between two states
of the network. The unit is thus the (spatial) change of the network, i.e. the
addition or removal of one node or one link. This unit is minimal because
nothing can happen in the network between two consecutive changes. We call
it intrinsic because time depends on the changes that occur in the network,
and changes depend on such time to happen. The relation between time and
space in networks is however out of scope of this thesis.

Whereas the extrinsic time is broadly used without notice, we �nd out in
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the following section that using it has a high impact on the measurement of
statistical properties of evolving networks. We will see that using the intrinsic
time avoids biases and allows us to reveal network dynamics. In the following,
the unit of intrinsic time is the appearance of a link, because we focus on link
stream data in this thesis.

5.2.2.2 Empirical Impact

We have conducted our experiment on the github dataset described in Sec-
tion 5.2.1 for various network metrics. We report the results related to the
evolution of the number of nodes, which is representative of the impact of
both time concepts. We indeed obtain similar results for the following met-
rics, which are classical properties of networks: the evolution of the number
of distinct links3, the number of connected components4, the average degree5

and the maximum degree6.
The observed number of nodes in the github dataset re�ects both the

number of users and the number of software repositories. The temporal evo-
lution of this statistical property when considering extrinsic time reveals a
daily and weekly pattern. On the contrary, the overall number of nodes is
very stable when intrinsic time is used, which con�rms that di�erent types
of dynamics are observed according to the time unit. The events which cor-
respond to spikes may clearly be extracted from the overall trend: this shows
that the graph has normal dynamics in the statistical sense (i.e. the mean
value is a relevant indicator for the description of the distribution of values)
and that statistical anomalies (i.e. values which deviate signi�cantly from
the mean) may be identi�ed. Although some events also seem to appear in
the curve obtained with extrinsic time, their characterizations are in practice
much more di�cult7. Intrinsic time therefore seems to be more relevant to
perform dynamic measures.

Figure 5.9 represents the evolution of the number of nodes over time, where
the size of the sliding window is one hour and ten minutes. The plot displays a
daily �uctuation of the number of nodes. We thus observe more nodes during
the day than during the night. The plot also displays a weekly �uctuation.
We thus observe a greater number of nodes during the week than during the
weekend, revealing the dynamics of users activities on the network. Hence

3The number of links is the window width, thus it is constant.
4Let C(G) be a connected component of G(V,E) (where V is the set of nodes and E is the

set of links): it is a connected sub-graph ofG, i.e. for each pair of nodes (u, v) ∈ C(G), a path
exists between u and v. The number of connected components is therefore |{C ∈ C(G)}|.

5Let d(u) be the degree of the node u, i.e. its number of neighbors. The average degree
of the graph G(V,E) is 2× |E|/|V |.

6Let d(u) be the degree of the node u. The maximum degree of the graph G(V,E) is the
maximum number of neighbors of nodes in the graph, i.e. max(D), D = {d(u),∀u ∈ V }.

7Chapter 6 is dedicated to the interpretation of detected events.
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Figure 5.9: Number of nodes in a sliding window of 10 minutes, plotted at
each minute.

Time (nb links)

N
b 

no
de

s

2000

4000

6000

8000

500000 1000000 1500000 2000000

Figure 5.10: Number of nodes in a sliding window of 10,000 links, plotted for
each set of 1000 links.

one can see the network as an artifact which is able to capture and reveal
phenomena that happen outside of it.

Figure 5.10 represents the same property, but the size of the sliding window
is 10,000 appearing links. This plot does not display such �uctuations. On
the contrary, we observe that the number of nodes is globally stable with
only a few variations and spikes. It is also the case for other properties that
we have studied, like the number of distinct links, the number of connected
components, the average degree and the maximum degree.

While we study the same property (number of nodes), the time unit has a
high impact on the resulting curves. We thus show that observed results are
bound to an underlying concept of time. Using the intrinsic time of the
network instead of the traditional extrinsic time, we reveal totally di�erent
dynamics for the total number of nodes, which is a trivial property. We
have also observed di�erent dynamics for the other properties that we have
studied further during this thesis. This study is hence of primary importance
in metrology. Our results support the hypothesis that the intrinsic dynamics
of the network is not captured by measures bound to an extrinsic time unit.
An extrinsic time unit seems indeed more likely to capture the dynamics of
exogenous activities on the network (i.e. which come from the outside), like
the day-night and weekly patterns. Further studies with other datasets are
however necessary to draw a �rm conclusion.

5.2.3 Sliding Window Width (Time Scale)

In this Section we study the evolution of di�erent metrics at various time
scales for both extrinsic and intrinsic times, i.e. for di�erent sizes w of the
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Figure 5.11: Number of nodes in a sliding window of 24 hours, plotted every
hour. Signi�cant spikes are circled.

Date

N
b 

no
de

s

0

5000

10000

15000

19000

11 March 13 April 31 May 18 July

Figure 5.12: Number of nodes in a sliding window of 12 hours, plotted every
hour. Signi�cant spikes are circled.

sliding window. As in the previous subsection, we report the results for the
evolution of the number of nodes, because this property is representative of
the time scale's impact.

5.2.3.1 Extrinsic Time

We have computed the number of nodes as a function of time for a sliding
window of size w = 10 minutes (Figure 5.9), 1 hour (Figure 5.13), 12 hours
(Figure 5.12 and 24 hours (Figure 5.11) on the Github dataset. Each plot for
w from 10 minutes to 12 hours clearly exhibits a daily trend. A weekly trend
is also observable for all studied w. These patterns are exogenous activities
as explained in Section 5.2.2. Spikes appear clearly for w equal to 10 minutes
and 1 hour; they are less extreme for w = 12 hours, and most of them have
disappeared for w = 24 hours. Surprisingly, the two remaining spikes for w =
24 hours are more extreme than for smaller w.

We expect that a large window width smoothes the resulting curve. The
plot corresponding to a 24 hours window (Figure 5.11) con�rms this intuition:
a regular variation can be observed, which looks more disrupted with the 12
hours window (Figure 5.12) and 1 hour window (Figure 5.13). This "noise"
is due to users daily activities on the system; 5 oscillations may be identi�ed
during the week and 2 oscillations during the week-end. The plot using 24
hours window therefore only re�ects the Monday to Friday period, displaying
lower user activity during the week-end. However we may observe the appear-
ance of events or the growth of their amplitude (positive peaks) when the size
of the window increases (circled spikes in these �gures). The consequences of
these results are the following:
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Figure 5.13: Number of nodes in a sliding window of 1 hour, plotted every 5
minutes. Spikes which are signi�cant at larger scales are circled. We zoom on
the dotted area.

• Smoothing the curve using a large window size is not a good option, as
it modi�es the shape of the plot and changes the perception of events.

• Trying to detect all events using a small window size is not a good
option either, as events taking place at higher time scales are missed.
This approach is also extremely costly in terms of computing time.

We now focus on the number of nodes using an intrinsic time unit to
determine whether or not we observe the same e�ects.

5.2.3.2 Intrinsic Time

We have computed the number of nodes as a function of time for a sliding
window of size w = 50,000 links (Figure 5.14) and 1000 links (Figure 5.15).
We observe in these �gures that the global trend and the regime changes (i.e.
sudden changes of the mean of the time series) are similar for all studied w.
Spikes observed on small w values disappear progressively when w increases.

Our intuition has led us to set a large w for removing non-signi�cant
events in order to smooth the global trend while keeping signi�cant events.
But we have discovered that this strategy alters the trend because some spikes
that are not present for smaller w can appear. One should thus consider the
duration of expected events to set the size of the sliding window accordingly,
and consider the results to be valid for this speci�c time scale only. In our
data, w = 10, 000 is a good tradeo� to observe all events, see Figure 5.10.

In this Section we have discussed which concept of time is relevant to
characterize the intrinsic dynamics of the system. We have also seen that
there is no optimal time scale for the characterization of events for
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Figure 5.14: Number of nodes in a sliding window of w = 50, 000 links, for
each 1000 links.
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Figure 5.15: Number of nodes in a sliding window of w = 1000 links, for each
100 links.

both extrinsic and intrinsic time. In order to capture the intrinsic dynamics
of user-system interactions, we propose in the following Section a speci�c
property for studying the core interactions in the github dataset, modeled
as a bipartite graph, using the concept of intrinsic time.

5.3 Application: Study of Github Internal Links

We propose to focus on the most stable interactions in the github system to
capture its essential topology dynamics (and neglect marginal -noisy- varia-
tions). We recall that github is modeled as a bipartite graph of link stream
(see de�nition in Section 2.1), where top nodes represent users and bottom
nodes represent software repositories.

The property we suggest to consider for monitoring the dynamics of most
stable user-system interactions is the number of internal links8. Whereas it
has been shown that internal links are able to capture interesting statistical
properties of bipartite networks, this notion has never been used for the study
of evolving networks. We measure the number of >-internal links using a
sliding window of 10, 000 links9. We observe on Figure 5.16 that the number of
>-internal links is globally stable around 2400 links, thus 24% of links inside
the sliding windows are internal links. This result is interesting because it
provides us a characterization of a normal behavior of the system. We
also observe signi�cant events with fast increases and decreases of the values
which are statistical anomalies of the system's behavior. These events are
however not new to us: we �nd also them in the evolution of the number of
nodes, or in the evolution of the number of distinct links (which plot is not
shown because similar to the number of nodes). So the number of internal

8As de�ned in Section 2.1
9This is the size selected in Section 5.2.3.
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Figure 5.16: Number of>-internal links in a time window of width w = 10, 000
links, for each 1000 links.

links seems strongly correlated to the number of distinct links.

This observation has led us to study the normalized number of internal
links, which is the number of internal links divided by the number of distinct
links in the sliding window. This property gives the ratio of internal links
observed in the sliding window. This ratio is di�erent from the ratio we can
compute on the previous property because only distinct links are counted. It
is relevant because the measure of internal links is independent from the fact
that more than one link exist between two nodes.

We automatically detect statistically signi�cant events using Outskewer
on the evolution of the normalized number of internal links. We annotate the
resulting plot on Figure 5.17 with a rectangle around each set of values which
are abnormal in the plot, or which are abnormal in other plots, and we label
the events with a capital letter. Points of the curve are colored as a function
of their outlying class: red for outliers, orange for potential outliers, blue for
not outliers, green for unknown. We observe that Outskewer is able to detect
automatically all events we identi�ed manually. They are either identi�ed by
a set of outliers, or by a set of unknown values. The latter case happens when
there is no normal behavior in the related sliding windows, but we consider
that something unexpected happens at this moment.

We identify one new event (compared to the number of internal links),
the small event A, while events E and G have disappeared. The event I is
interesting: it is the only one with an increasing spike on the plot of the
number of internal links, and it is also revealed by the plot of the maximum
degree (not shown here). Moreover, we discover that all decreasing spikes in
the plot of the number of links are increasing instead in this plot. The ratio
of internal links increases when the number of distinct links decreases. This
e�ect is due to an intrinsic bias of this property, which counts as internal links
the links attached to nodes of degree equal to 1 (a node of degree 1 is a node
with 1 single neighbor in the graph). We may remove this bias by ignoring
the nodes of degree 1. We thus obtain the proportion of internal links among
the links that connect nodes which have at least two neighbors. We see in
Figure 5.18 that this �lter has removed most events, thus keeping the most
signi�cant connections.
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Figure 5.17: Number of >-internal links divided by the total number of dis-
tinct links in the time window of width w = 10, 000 links, for each 1000 links.
Events are circled and labeled by a letter. Colors represent the outlying class
of values: outliers in red, potential outliers in orange, normal values in blue,
unknown values in green.
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5.4 Conclusion

We have proposed in this Chapter a generalization of Outskewer for event de-
tection in link streams. This approach is easy to set up but raises challenging
questions: which time unit should be used, and at which time scale? We have
studied the evolution of the github network to characterize normal behavior
and to detect abnormal dynamics, through the measurement of speci�c sta-
tistical properties over a sliding window. We observe that �wall-clock� time
units like the second and the hour may hide events because of the impact
of cyclical human activity. We have thus introduced the notion of intrinsic
time (as opposed to traditional extrinsic time), based on link appearances, to
avoid this issue. Intrinsic time reveals totally di�erent dynamics from those
observed with extrinsic time: the time series of the network statistic exhibit
a stable behavior with some peaks and regime changes, allowing us to detect
clear events that we could not see otherwise.

We have also studied the impact of time scale on event detection with both
intrinsic and extrinsic time. As new events appear at various time scales,
we have seen that there was no optimal time scale (i.e. optimal width for
the sliding window), which is counter-intuitive. The smallest resolution is
thus not able to capture all events. Many existing studies on the impact of
time scale in dynamic network measurements propose di�erent methods to
compute an optimal time window, however they never verify the impact on
event detection.

We have �nally applied our (generalized) method to the github dataset10

using an intrinsic time unit. We have successfully captured the normal be-
havior of this system using a property called the internal links which reveals
the core interactions and signi�cant events. The observation of internal links
enables us to �nd novel events, which one could not see otherwise, while it
con�rms events detected using basic metrics. Our approach may be applied to
any interaction system to model its behavior, de�ne its regular evolution and
detect potential anomalies (�events�). It may ultimately be used in a real-time
fashion to raise alerts automatically when abnormal behaviors occur.

However an exploratory analysis is required before any automation. First,
a multi-scale analysis of detected events would shed light on the nature and
scale of the events. Second, an investigation of the network is needed to
validate and eventually interpret the events. Visualization techniques may
help in this task, and events detected by Outskewer can be used as entry
points in the network to explore its state at the time of the event. The
complete chain may form an exploratory framework for event detection in
link streams. This is what we study in the following Chapter.

10See Section 2.2 for the description of the github dataset.
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In this Chapter we propose our hybrid exploratory method that
combines automatic detection of statistically signi�cant events (see
Chapter 5) with visual graph mining techniques (see Chapter 3) to
validate and interpret them if possible. We �rst use Outskewer on a
speci�c graph statistic. Afterwards, we pick up one of the detected events
and perform a preliminary visualization of the corresponding sub-graph as a
node-link diagram; we then identify an abnormal pattern, if any. A second
visualization focused on the nodes of this pattern allows studying its tem-
poral evolution and thus verifying whether this pattern is new (based on its
existence or absence in the past). We consider that a new pattern (or a new
combination of patterns) at the time of the event is correlated to it, and
therefore may explain the event.

We apply our complete investigative method to the github on-
line social network1, which allows us to validate relevant events proposed
by Outskewer and reject those for which no abnormal pattern is found. We
thus show the complementary of the automatic method (based on a statisti-
cal analysis) and the manual method (based on interactive visualization) for
event detection in a large link stream.

This Chapter is organized as follows. Section 6.1 describes the method.
Section 6.2 describes a case study on the github dataset. We conclude in
Section 6.4.

1Presented in Section 2.2
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6.1 Exploratory Method for Event Detection in

Link Streams

Our method is divided into two steps. The �rst one consists of the automatic
identi�cation of statistically signi�cant changes in the network topology over
a sliding time window, based on a graph statistic as described in Chapter 4
and 5. These windows are classi�ed as outlier, potential outlier, or normal.
This method processes the whole graph quickly, so that the analyst can focus
on abnormal windows. This second step aims at validating the relevance of
the previously detected events. To do so, we propose to visually identify ab-
normal patterns in the sub-graph corresponding to the abnormal time window
(as suggested in Chapter 3), then to check that these patterns are actually
abnormal over time.

Step 1: an automatic event detection is performed on a time series Sw (of
a graph statistic Siw) as de�ned in Section 2.1 using the Outskewer method.

Step 2: the visual analysis of events aims at validating the previously
detected events i, and at interpreting them if possible by �nding correlations
with abnormal patterns in the corresponding sub-graphs Gi

w. For instance,
the sudden and frequent recurrence of a link appearance contributes to dra-
matically reduce the number of unique nodes observed over a time window
at this moment. This event may be automatically detected but may have
multiple explanations as we will see in the following of the Chapter.

We propose an interactive visualization that allows analysts to investi-
gate events detected by Outskewer. We assume that they know how to read
and interpret node-link diagrams, which are the most common representation
of networks in scienti�c visualization systems (e.g. SoNIA [MMBd05], Vi-
sone [BW04], ViENA [WZF11], Gephi [BHJ09], NodeXL [SSMF+09], Tempo-
Vis [ATMS+11], and GraphDiaries [BPF+12]). Our prototype has to respect
the following constraints:

• Represent the network structure as a node-link diagram.

• Do not display the entire network, which may be made of millions of
nodes and links, making the diagram unreadable2.

• Consider that the events detected by Outskewer may be very sparse over
time due to long periods of abnormal activity.

The event validation and interpretation steps rely on the visualization of
each sub-graph Gi

w whose statistic Siw has a value classi�ed as abnormal by
Outskewer (i.e. the event). Although abnormal patterns may appear in Gi

w,

2as explained in Section 3.1.5.4
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this view is not enough to correlate a pattern and an event. We consider that
the pattern should exceptionally appear at this time of F . The visual event
investigation follows three steps:

1. Extract the sub-graph Gi
w.

2. Identify one or more suspicious patterns according to the analyst's cri-
teria.

3. Disambiguate event interpretation: for each abnormal pattern, deter-
mine whether it occurs only during the event. If this is the case, we
consider that the pattern is correlated to the event.

These three steps are detailed below:

1. Selection of events to be investigated: we recall that an event is an
abnormal value of Siw or a set of consecutive abnormal values
{Siw, Si+1

w , ..., Sjw}, i ≤ j. We study the sub-graph Gi
w that corresponds to the

event, or to the �rst value observed at the beginning of the event. Other
possibilities exist such as studying the sub-graph of highest anomaly score in
[i, j].

2. Identi�cation of an abnormal pattern: the analyst selects an event i
in the combo list of events. The sub-graph Gi

w is displayed; the analyst may
reduce the time window size w′ for display (thus reducing the sub-graph size)
or keep the size w used during automatic detection. The analyst observes the
node-link diagram to �nd suspicious patterns (regarding the graph statistic
used by Outskewer), such as stars, connected components, or a weighted link.
If a suspicious pattern is found, the analyst explores the graph evolution
around the time of the event. If this pattern remains observable before or
after this time, then it is obviously not correlated to the event. The analyst
may look for another pattern, or consider that the event is invalid.

3. Event interpretation: once a suspicious pattern is found, the analyst
investigates if it is unusual or repetitive. This step tests the correlation of
the pattern and the event. As illustrated in the following Section, the analyst
selects the nodes of the pattern and hides the others. He/she colors the
interaction diagram and sees directly whether the links between the nodes of
the pattern appear at other periods (in green). If this is not the case, then the
pattern is unique and considered as correlated to the event. Otherwise the
analyst moves the cursor over each period of appearance, to explore the shape
of the topology among these nodes. The node position remains stable so that
he/she can compare multiple versions of the pattern over time by exporting
graph pictures (through the tool bar). If the pattern is redundant, then one
cannot assert that it is correlated to the event, even if it may be abnormal in
Gi
w. Conversely, if the pattern appears only at the time of the event, then one

can assert that it is correlated to the event and interpret the event accordingly.
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Figure 6.1: gui of the prototype, derived from the Linkurious software.

6.2 Description of the Prototype

Our prototype extends the features of the commercial software Linkurious3

that we have co-developed. The user interface consists of 1) a graph visu-
alization canvas represented as a node-link diagram, 2) a tool bar, 3) lateral
information and statistical panels, to which we add on the bottom of the screen
4) an event selection panel and a temporal navigation panel. The prototype is
developed in HTML5 and Javascript to run in a Web browser. It connects to
a Neo4j graph database4. These elements of the interface are detailed below:

(1) ForceAtlas 2 [JHVB11], a force-directed algorithm, places the nodes
as a node-link diagram in a 2-d space. Links are weighted according to their
number of appearances in the displayed graph. This way, the displayed graph
is not a multi-graph (i.e. graph with multiple links between two nodes), which
would have been di�cult to represent and to read. Two visual variables5 asso-
ciated to links may represent their weight: line thickness and color. Thickness
is related proportionally to weight, and color is a linear gradient from grey
(small value) to red (high value). Discs represent nodes and their surface is
proportional to the node weighted degree. The user may also zoom and move
the camera.

(2) The search bar helps �nd a node according to an attribute associated
to it, such as the name of the entity represented by the node. The view is
then centered on the node corresponding to the selected result. The tool bar
allows to select, expand and hide nodes and links.

(3) The lateral panels display the attributes of the selected nodes and
links. The user can color nodes according to an attribute, and modify line
thickness and color. A diagram represents the distribution of link weights
using colors, thus showing the rank of a link in the distribution.

3http://linkurio.us
4http://www.neo4j.org
5These variables reinforce their e�ects and speed up visual search of anomalous link.

http://linkurio.us
http://www.neo4j.org
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(4) The bottom panels are the novelty we bring to Linkurious. They
allow to select an event i in a combo list, to set the size of a time window w′

(which may di�er from the size w of the time window of Outskewer), and to
display the corresponding sub-graph Gi

w′ . A slider allows to shift the position
of the time window slightly before or after the time of the event (up to 10,000
links upstream or downstream) to observe the evolution of the graph around
the event. An interaction diagram represents the whole link stream F and
a cursor on it allows to �teleport� the window anytime. Each percentage of
the diagram width is colored according to the number of link appearances
between the nodes displayed on the canvas at these periods: from grey (no
appearance in the period) to light green (maximum number of appearances
in the period). If one node is displayed, then its colors corresponds to the
number of links connecting this node to other nodes. This diagram aims at
showing the frequency of a link between nodes of a graph pattern over the
whole graph evolution. This diagram is compact (10 pixels per 500 pixels in
our implementation) but its accuracy is inversely proportional to the number
of links m in F . Form = 1000000 and a width of 500 pixels, a width of 1 pixel
encodes indeed 2000 links. Interactive features like a zoom could improve its
accuracy.

We show in the following Section the result of a case study obtained with
this prototype.

6.3 Application: Study of Github Events

6.3.1 Automatic Event Detection

We illustrate the interest of our approach on a basic statistic: the number of
unique nodes Siw = card(V i). Following our study [HLG13b] of the impact
of time window size on event detection (see Chapter 5) in this dataset, we
compute Siw on F with w = 10000 links and we apply Outskewer on S with
wo = 200 links. These values are indeed a good tradeo� to detect events.

We observe on Figure 6.2 that the values are globally stable over time (in
blue), but some decreasing peaks appear sometimes. The values of these peaks
are classi�ed as outliers (in red), and some values are potential outliers (in
orange). We extract a list of events from the results6. Note that Outskewer
may not be able to classify values during periods that �uctuate too much
because no normal behavior can be found. In this case, values are classi�ed
as unknown (in green).

6see the de�nition of event in Section 2.1
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Figure 6.2: Time series of the number of unique nodes in the github link
stream, with w = 10000 and wo = 200 links. Abnormal values are in red, and
the arrows point to the events analyzed in this Chapter.
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Figure 6.3: Diagram of interactions between the �goneri� user and the �fus-
inv/glpi� project. We clearly see that the user stops working on the project
at a speci�c time. The event period is circled.

Figure 6.4: Diagram of interactions of the �mxcl/homebrew� project. This
project receives contributions of users during the whole duration of the
dataset. The event period is circled.

6.3.2 Visual Event Validation

We apply our visual method to check the relevance (i.e. validate) of most of
these events and to interpret them, if possible.

Event 106000: Gi=106000
w=10000 has 6509 unique nodes, 4313 unique links, and

2233 connected components. The visualization brings out the relationship
between the �goneri� user and the �fusinv/glpi� project, with 207 link appear-
ances during this period, as well as the star relationships of the �mxcl/homebrew�
project. These suspicious patterns are however not correlated to the event.
We observe in the interaction diagrams of Figure 6.3 and 6.4 that these in-
teractions are usual during the whole time of F for �mxcl/homebrew�, and
happen until a speci�c time between �goneri� and �fusinv/glpi�. Thus we do
not validate the event.
Event 423000: Gi=423000

w=10000 has 2531 unique nodes, 1525 unique links, and 1007
connected components. The visualization brings out the relationship between
the �mapserver-trac-importer� user and the �mapserver/mapserver� project7,
with 6993 link appearances during this period. We observe in Figure 6.1
that the interactions are very intense, with 731 link appearances in a window

7https://github.com/mapserver/mapserver

Figure 6.5: Interactions are usual between this pair of nodes during the event
423000, con�rmed by the area in light green of the interaction diagram. We
note another area in dark green earlier in the stream.

https://github.com/mapserver/mapserver
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Figure 6.6: Interactions of the �nebkat� user with a large amount of projects
during the event 969000. The interaction diagram is green only at the time
of the event.

of size w′ = 1000. We observe in the interaction diagram Figure 6.5 two
short interaction periods, and the one of greatest intensity happens during
the event. We can therefore validate and interpret the event. The
node name �mapserver-trac-importer� indicates that the related user account
is not human. We check this assumption on its activity page on Github.com8,
and we note that the account has been renamed since then as �mapserver-bot�.
This bot aimed at migrating the source code and bug list of the �mapserver�
project from Trac to Github. We �nd traces of the discussion which started
on March 19, 2012 inside the developer community on a public mailing-list9.
The event hence corresponds to the time of the migration of the source code or
the bug list: the bug #110 dates indeed from April 2, 2012 on Github, which
corresponds to the starting date of the event, on April 3, 2012 at 17:37:55
(ti=413000).
Event 969000: Gi=969000

w=10000 has 5681 unique nodes, 3752 unique links, and
1958 connected components. The visualization brings out a star around the
�nebkat� user, who has suddently contributed to more than 100 projects owned
by the �android-mirror� user, with 2138 link appearances. We also observe a
connected component mostly made of projects coded in Rails and Javascript
with more than 240 nodes, but which disappear at a smaller time scale (at
w′ = 1000). We decide to focus on the �nebkat� star. We observe on the

8https://github.com/mapserver-bot?tab=activity
9https://lists.osgeo.org/pipermail/mapserver-dev/2012-March/012100.html
10https://github.com/mapserver/mapserver/issues/1

https://github.com/mapserver-bot?tab=activity
https://lists.osgeo.org/pipermail/mapserver-dev/2012-March/012100.html
https://github.com/mapserver/mapserver/issues/1
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Figure 6.7: Visualization of interactions with the �aruiz� user during the event
1420000 with w′ = 1000.

Figure 6.8: Interaction diagram of the �aruiz� user.

interaction diagram of Figure 6.6 that �nebkat' interacts only at the time of
the event. The number of link appearances at this very moment encourages us
to validate the event as correlated to this pattern. However the �android-
mirror� account has been deleted from Github.com before out study, so we
cannot interpret the event.
Event 1303000: Gi=1303000

w=10000 has 6642 unique nodes, 4395 unique links, and
2318 connected components. No pattern appears clearly. 17 nodes have be-
tween 50 and 110 interactions each, and a connected component has more
than 380 nodes. We may reasonnably make the assumption that the abnor-
mal value of the statistic is due to a combination of factors. We thus do not
validate the event.
Event 1420000: Gi=1420000

w=10000 has 4049 unique nodes, 2606 unique links, and
1458 connected components. The visualization shows a star around the �aruiz�
user, who has contributed to group projects of �GNOME-Project�, with 5049
link appearances (see Figure 6.7). We also observe a star around the project
�twitter/bootstrap�, with 208 link appearances. We decide to focus on the
�aruiz� star because it has twenty times more link appearances. We observe
in its interaction diagram on Figure 6.8 that it interacts at the time of the
event only. We thus validate the event, however the available information
on Github.com is not su�cient to interpret it.
Event 2247000: Gi=2247000

w=10000 has 7315 unique nodes, 4967 unique links, and
2451 connected components. The visualization displays a star around the
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Figure 6.9: Interactions of �Try-Git� over time. We observe that the interac-
tions with this node appear much before the event 2247000 and start suddenly
at the event 1969000.

�Try-Git� user with 300 link appearances. We also observe two connected
components of 270 and 300 nodes respectively. The event is ambiguous. We
observe in the interaction diagram of �Try-Git� Figure 6.9 that most of its
interactions happen during the previous event 1969000. We do not validate
the event, and we analyze the event 1969000.
Event 1969000: Gi=1969000

w=10000 has 8651 unique nodes, 6817 unique links, and
1855 connected components. The visualization brings out a star around the
�Try-Git� user with 3658 link appearances, which con�rms the event suggested
by its interactions diagram Figure 6.9. We �nd out on this project's Web
page that it is a tutorial for Git, one of Github's underlying tools; the �rst
action required from the user in this tutorial is to create a clone with a new
project (by sending this user a CreateEvent message). The instant of the event
corresponds to the moment when Try-Git was made public, on July 4th, 2012
at 5 pm (this information was con�rmed by a post on the Github.com blog11).
We thus validate the event.

6.4 Conclusion

We have presented a new hybrid method of investigation in a large link stream
to detect signi�cant events in interactions between users of the online social
network Github, by combining the Outskewer statistical method with a visu-
alization system. Outskewer detects statistically signi�cant events according
to a graph statistic, and points to some moments of the evolution of the
graph to be investigated. All these events are not necessarily relevant, and we
need further validation, facilitated by the visualization. The latter shows a
subgraph corresponding to the time of the events and facilitates longitudinal
monitoring of abnormal patterns present in this sub-graph, which allows to
precisely locate abnormal patterns at these times, and see if they appear to
be related to the event.

We have illustrated our complete method on the github dataset with no a
priori on the investigated events, and show through several examples that we
are able to detect relevant events, and to reject events proposed by Outskewer
but for which we do not �nd any anomaly in the network. We have thus
shown the complementarity of statistics and visualization to detect events

11https://github.com/blog/1183-try-git-in-your-browser

https://github.com/blog/1183-try-git-in-your-browser
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in a large link stream. Nonetheless, once a typology of events is identi�ed
for an investigation task, it is possible to fully automate the detection and
validation of events by replacing the visualization by statistical analysis of
patterns. Methods like Oddball [AMF10b] could detect abnormal patterns in
the sub-graphs corresponding to abnormal windows.

We discuss our future work in the following Chapter.
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7.1 Conclusion

In this thesis we have focused on the detection of events in link streams, which
are ideal to model temporal interactions in many complex systems. Our main
contribution is the creation of a general methodology of exploratory
analysis of link streams, in order to detect events in the evolution of
the underlying network topology. This exploratory framework combines
automatic event detection with visual validation. The proposed approach is
generic, and it may be adapted to speci�c use cases1 by selecting an appropri-
ate statistic for event detection and by specifying the valid kinds of events. It
is ultimately possible to make the detection and validation of events entirely
automatic once the events are characterized.

In spite of the diversity of complex systems which may be modeled as link
streams (such as online social networks, telecommunication networks, search
engine queries, and credit card payment systems) and their potential to de-
scribe the dynamics of large networks at a very �ne granularity, link streams
and their dynamics remain insu�ciently explored. Our �rst contribution in
Chapter 1 is thus a rigorous de�nition of a link stream; we have also de�ned
the notions related to the study of their dynamics, in particular the concept
of statistically signi�cant event. The study of events is tightly related to the
characterization of link streams: nodes and links usually appear and disappear
over time in such streams, so a core research question is to determine to what
extent such dynamics is regular, and in which cases irregularities (i.e. events)
occur. Our methodology provides an experimental framework for the explo-
ration of real-world data, which is an important step towards the proposal of
theoretical frameworks.

1We have worked on several datasets.
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We have started with the investigation of two visualization-based
approaches in Chapter 3. The �rst one based on a timeline helps users
select a sub-graph corresponding to an event observed in the time series of
the evolution of a graph statistic, but it remains limited by the graph size
as we initially display the complete graph. The second technique is based on
the incremental exploration of a graph, that allows experts to reveal points
of interest in static graphs. This experiment has encouraged further studies
of local approaches to visual exploration, which nonetheless have to be
preceded by an automatic detection of events in the graph evolution.

In Chapter 4 we have proposed an automatic approach to characterize
time series. Most current methods for event detection need a priori knowl-
edge on the observed system, but we have chosen to design an exploratory ap-
proach with no prior information. We have thereby proposed a novel method,
called Outskewer , which allows to detect statistically signi�cant anomalies
both in samples and time series, with no parameter but the time scale (i.e.
the size of the sliding window on time series) for multi-scale analysis. We have
performed experimental validation on synthetic data to control its accuracy
and performance. We have successfully applied it to three various datasets to
detect relevant events. Outskewer may help characterize link streams dynam-
ics by distinguishing regular dynamics (i.e. when nodes and links appear and
disappear regularly over time) from abnormal dynamics.

However it raises multiple questions on the way times series that show the
evolution of a graph statistic are generated, and on their characterization in
the perspective of event detection. We have indeed observed in github online
social network that the time series of graph statistics presented day-night and
weekly patterns due to user activity (Chapter 5). The observation of cycli-
cal human activity, which appears when traditional time units like minute
are used, prevents us to observe the network's intrinsic dynamics and to de-
tect related events. We have therefore introduced the concept of intrinsic
time , which provides new time units based on the appearance of links in the
stream. This operation enables us to generalize the use of Outskewer
to the precise observation of link stream dynamics. It especially allows de-
tecting events unseen before, hidden by periodical patterns. However the
choice of the method's parameter (i.e. sliding time window) has non-trivial
impacts on event detection: we have shown on the github dataset that there
is no optimal time scale because events can appear at various scales, which
is counter-intuitive. The smallest resolution is thus not able to capture all
events. We have proposed a graph statistic based on the internal links of
a bipartite graph, which is able to capture the core interactions and reveal
signi�cant events after identifying a good size of the time window.

Finally, we have proposed in Chapter 6 an exploratory method to visually
validate and interpret the statistically detected events. For each sub-graph
corresponding to the identi�ed events, we have looked for abnormal patterns in
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the node-link diagram; if they only appear at this particular moment, then we
can reasonably interpret the events as correlated to these patterns, and use the
associated meta-data to suggest an explanation. We have illustrated our
complete methodology on the github dataset: we have shown through
multiple examples that it allows detecting relevant events and rejecting the
others. This new methodology is perfectly suited for an exploratory approach,
because no prior knowledge on data is required.

7.2 Future Work

Although we have used various datasets along this thesis to validate each
component separately, the complete methodology has only been applied to
the github dataset. In order to generalize our framework we will experiment
it with other datasets and assess its e�ectiveness by an expert. These studies
will contribute to a better understanding of the limits of our approach, and
will provide ground for alternative solutions. Moreover, the statistics and
events detected so far are very generic, and may be used for any link stream.
Further studies may explore statistics and events that are more speci�c to
one use case, e.g. in fraud detection where speci�c patterns are signi�cant.
These studies should therefore focus on integrating existing knowledge into
the exploratory process. To conclude the general remarks, let us note that a
study of the algorithmic complexity of our method is missing. We have been
able to process a 2 million link stream (representing 4 months of Github's
life) in a minute with Outskewer, however a rigorous study is necessary to
understand its limits and to optimize it. Other important factors are the
graph statistics used to compute the time series analyzed by Outskewer, and
the shape of the patterns correlated to the expected events.

Our methodology provides an exploratory framework and as such, it opens
more speci�c research questions. First, we have de�ned the intrinsic time as
based solely on link appearances. It would be interesting to generalize this
concept to streams of appearances but also removals of nodes and links. Such
streams represent series of graph changes and may encode �lifetimes� of nodes
and links, like contact duration in face-to-face human interactions [BC13].

Second, the notion of intrinsic time may be applied to other contexts like
dynamic community detection, time-based graph visualization, and di�usion.
We have contributed to preliminary works [AGHLG13] showing that applying
it to the study of di�usion processes reveals alternative phenomena from those
observed using traditional time units.

Finally, little has been done on the local exploration of networks whereas it
is an interesting approach to visualization, especially on very large networks.
We have thus co-developed Linkurious2, an enterprise-level software for the

2http://linkurio.us/

http://linkurio.us/


136 Chapter 7. Conclusion & Future Work

visualization of graph databases of dozens of millions of nodes and links. It
combines a search engine and a local view of the search results (as nodes) with
the ability to navigate from node to node by hiding and expanding connec-
tions. It is used for tasks that do not require an overview of the network, and
is particularly appreciated in knowledge management projects.

7.3 Outro

We would like to close this manuscript on the position of this thesis in the �eld
of informatics (i.e. automatic information processing) and outline industrial
perspectives. What is the �nal product of our methodology? It is neither
a metric, nor a visualization as these are both used as intermediate results.
Instead, it is really the generation of statements about events, like �an event
happened at a certain <date> involving a set of <entities>, interpreted as a
<case>�. The goal of our research was not the improvement of a particular
statistical technique nor of a visualization technique alone. We have therefore
focused our work on the key problems for the generation of such statement.
Statistics and visualizations are processes embodied in our approach to sup-
port ground truth for the �nal statements. The statements are self-contained
information that may be shared directly. Statistics and visualizations may be
archived as proofs once the analysis is over, as they carry valid references from
the object of study to the �nal statements. We have proposed an information
processing framework which may be fully automated. Our thesis therefore
contributes to informatics.

Our framework is able to compute statements regarding network events
through a �collaboration� between original data, a computer, and a human
analyst. The role of the human is to prepare data, to scrutinize the unex-
pected, and to question data and machine's results. He/she may no longer be
useful once events are formally characterized and a corresponding validation
algorithm is implemented. But he is always required to improve the methodol-
ogy and to adapt it to new kinds of events, like a re�exive consciousness of this
information generator. One may smile at the reading of such oneiric descrip-
tion, but this type of collaborations do already exist with automated content
technologies: computers write stories based on data. For instance, automated
football news are generated based on event data produced during games. The
computer creates the story, describes the events, and the (human) journalist
is left to write a deeper analysis. See the companies Automated Insight3 and
Narrative Science4 to discover other applications in �nancial information, real
estate and marketing. May we envision such future for our methodology?

3http://automatedinsights.com
4http://narrativescience.com

http://automatedinsights.com
http://narrativescience.com
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