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Community structure

A complex network has community structure if the nodes of the
networks are easily grouped into sets of nodes such that each set of
nodes is densely connected internally.
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Communities may overlap.
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Overlapping community structure

Partition
a division of a graph into disjoint
communities, such that each
node belongs to a unique
community.

s

r

Cover
A division of a graph into overlapping
(or fuzzy) communities, such that
some nodes are shared by several
communities.
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Dynamic networks

Network structure dynamically evolves in time.

Our second problem : Tracking community evolution in dynamic
networks

Qinna WANG Overlapping community detection in dynamic networks 7 / 39


basket.avi
Media File (video/avi)



Background
Overlapping community detection

Community evolution in dynamic networks
Conclusion and perspectives

Community structure
Problem
Our contributions

Dynamic networks

Network structure dynamically evolves in time.

Our second problem : Tracking community evolution in dynamic
networks

Qinna WANG Overlapping community detection in dynamic networks 7 / 39


basket.avi
Media File (video/avi)



Background
Overlapping community detection

Community evolution in dynamic networks
Conclusion and perspectives

Community structure
Problem
Our contributions

Community dynamics
Scenarios in the evolution of communities by Gergely Palla et
al. [PBV07]
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Our contributions

Overlapping community detection
Tracking community evolution and identifying community
dynamics
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Fuzzy detection

When running several
times the Louvain algorithm
on the same given network,
we observe different
partitions.
”Oscillating” nodes are
possible overlapping
nodes.
Problem : compute
Pc = [Pci,cj ]n×k whose Pci,cj

represents the probability
of node ci belonging to the
community Cj.

0

0.5

0.5

s

r

Qinna WANG Overlapping community detection in dynamic networks 14 / 39



Background
Overlapping community detection

Community evolution in dynamic networks
Conclusion and perspectives

Fuzzy detection
Applications to real networks

Fuzzy detection

Related work 1

Definition

An edge e = (i, j) is external if pij < α∗(e.g. α∗ = 99.5%)

Definition
A robust cluster is the composition of connected graph after removing
external edges

Definition
The core of the community is the robust cluster has the maximum
number of nodes.

1. Gfeller et al., Finding instabilities in the community structure of complex networks,
Physical review. E

Qinna WANG Overlapping community detection in dynamic networks 15 / 39



Background
Overlapping community detection

Community evolution in dynamic networks
Conclusion and perspectives

Fuzzy detection
Applications to real networks

Fuzzy detection

1 Detect robust clusters
Several runs of Louvain algorithm to compute a co-appearance
matrix P = [Pij]n×n

Save the partition Popt with the highest modularity
Remove all external edges from Popt

2 Adjust memberships of robust clusters
Identify community core : ĉi = arg maxcj⊆Ci

|cj|, where Ci ∈ Popt

Compute Pc = [Pci,cj ]
Add robust cluster ci to community Cj if pcj ,̂ci ≥ β∗(e.g. β∗ = 10%)
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Datasets

Synthetic graphs containing hierarchical structure
16 small groups : k1 = 30
4 super groups : k2 = 13

1 group (modular overlaps) is shared by 2 super groups
for others, each group belongs to a unique super group.

External links : k3 = 5
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Performances in testing artificial networks
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Conclusion : Fuzzy detection detects modular overlaps
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Applications to Complex System Science
Complex System Science is a citation graph 2.

Source : ISI Web of
knowledge
Node : an article (2000 -
2009) ; contains keywords
(complex systems)
Weight : bibliographic
coupling [Kes63] :

wij =
|Ri ∩ Rj|√
|Ri| |Rj|

.

Communities : research
topics or theoretical fields. !OOOCCC

!pppeeeccctttrrrooossscccooopppyyy

CCChhhaaaooosss      ttthhheeeooorrryyy

BBBiiiooolllooogggiiicccaaalll      pppsssyyyccchhhooolllooogggyyy

!yyysssttteeemmmsss      nnneeeuuurrrooosssccciiieeennnccceee

DDDyyynnnaaammmiiicccsss      tttuuurrrbbbuuullleeennnccceee

MMMooollleeecccuuulllaaarrr      bbbiiiooolllooogggyyy

EEEcccooosssyyysssttteeemmmsss

GGGrrrooowwwttthhh      ttteeeccchhhnnnooolllooogggyyy      aaannnddd      sssuuupppeeerrrlllaaattttttiiiccceee      mmmaaattteeerrriiiaaalllsss

CCCooommmpppllleeexxx      nnneeetttwwwooorrrkkksss

CCCooommmpppuuuttteeerrr      sssccciiieeennnccceee

CCCllliiinnniiicccaaalll      pppsssyyyccchhhooolllooogggyyy

Results of Louvain algorithm

2. Grauwin Sebastian, Jensen Pablo et al. Complex Systems Science : Dreams of
Universality, Reality of Interdisciplinarity. Journal of the American Society for Information
Science and Technology, ASIST, 2012Qinna WANG Overlapping community detection in dynamic networks 20 / 39
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Applications to Complex System Science

Results in views of modular overlaps

computer 
science

Ecosystems Discrete-event 
systems

Multi-agent 
Systems

Computational
 complexity
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Introduction about community evolution

A dynamic graph G(V, E)
on a finite time sequence
1 . . .∆ is a sequence of
graph snapshots
{G(1), . . . ,G(∆)}.

The evolution of a
community can be tracked
by its evolution path :
Evol(Ci) :=
{Ci(δ), . . . ,Ci(δ + ∆)}
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on a finite time sequence
1 . . .∆ is a sequence of
graph snapshots
{G(1), . . . ,G(∆)}.

The evolution of a
community can be tracked
by its evolution path :
Evol(Ci) :=
{Ci(δ), . . . ,Ci(δ + ∆)}

1

3

4

2

t

Ci

Ci(1)

Ci(2)

Ci(3)

Ci(4)

Qinna WANG Overlapping community detection in dynamic networks 24 / 39



Background
Overlapping community detection

Community evolution in dynamic networks
Conclusion and perspectives

Introduction
Our method
Applications

Community dynamics

Community dynamics make community evolution
become difficult to track.
However, the definition of community dynamics is a
problem.
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Group persistence two-stage method

1 Detect partitions, robust clusters by fuzzy detection algorithm at
each time step ;

2 Map clusters through group persistence.
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Our definition

Given a temporal cluster Ci(t) at time t, 3

Definition (Community predecessor)

if Cj(t − 1) has the maximum overlap size at time t − 1,
such that Cj(t − 1)→ Ci(t)

Definition (Community successor)

if Ck(t + 1) has the maximum overlap size at time t + 1,
such that Ci(t)← Ck(t + 1)

3. Q.Wang and E.Fleury, Understanding community evolution in Complex systems
science, 1st International Workshop on Dynamicity, December 12, Collocated with OPO-
DIS 2011, Toulouse, France
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Asymmetrical relationship

This asymmetrical property allows us to characterize community
dynamics :

t = 1 t = 2 t = 3 t = 4

C1 : C1(1) // C1(2)oo // C1(3)oo // C1(4)oo

C2 : C2(2)

aa

// C2(3)oo

<<

C3 : C3(2) // C3(3)oo
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This asymmetrical property allows us to characterize community
dynamics :

t = 1 t = 2 t = 3 t = 4

C1 : C1(1)
Survive// C1(2)oo

Grow// C1(3)oo
Shrink // C1(4)oo

C2 : C2(2)
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Survive// C2(3)oo

<<
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Asymmetrical relationship

This asymmetrical property allows us to characterize community
dynamics :

t = 1 t = 2 t = 3 t = 4

C1 : C1(1)
Survive// C1(2)oo

Grow// C1(3)oo
Shrink // C1(4)oo

C2 : C2(2)

Split

aa

Survive// C2(3)oo

Merge
<<

C3 : C3(2) // C3(3)oo
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Asymmetrical relationship

This asymmetrical property allows us to characterize community
dynamics :

t = 1 t = 2 t = 3 t = 4

C1 : C1(1)
Survive// C1(2)oo

Grow// C1(3)oo
Shrink // C1(4)oo

C2 : C2(2)

aa

Survive// C2(3)oo

<<

C3 : Emerge C3(2) // C3(3)oo Disappear
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Complex cases

t = 1 t = 2 t = 3 t = 4

C1 : C1(3) //

{{

C1(4)oo

C2 : C2(1) // C2(2)oo

##
C3 : C3(1) // C3(2)oo // C3(3)oo // C3(4)oo
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Complex cases

t = 1 t = 2 t = 3 t = 4

C1 : C1(3) //
Split

{{

C1(4)oo

C2 : C2(1) // C2(2)oo Merge

##
C3 : C3(1) // C3(2)oo // C3(3)oo // C3(4)oo
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A dynamic blog network

Dynamic blog networks 4 :
approximately six thousand blogs

Aggregate links between blogs every day(120 days)

8 time steps (14 days as a time interval)

4. Abdelhamid Salah brahim, Matthieu Latapy et al. Citations among blogs in a hie-
rarchy of communities : method and case study. Journal of Computational Science, Vol
2(3), 2011
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Application to a dynamic blog network
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Each community whose evolution is survival shares the
same topic.
New community corresponds to the event of new blogs.
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The past history of complex system science network

Time period Number of nodes Number of edges Total weight
1985-1994 20286 1004458 183594
1990-1999 62040 6179802 1.0569e+06
1995-2004 109458 12662556 2.1206e+06
2000-2009 141163 19603888 3.6701e+06

TABLE: Properties of the past history of Complex System Sciences.
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Application to a dynamic citation network
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Split events in the past history of Complex System
Sciences

Neural networks and
Computation theory 

Neural 
networks

Computation 
theory 

in networks

Genetic 
algorithm

Neural 
networks

 SYSTEMS                    

 NEURAL NETWORKS            

 ALGORITHM                  

 IDENTIFICATION             

 DESIGN                     

 NETWORKS                   

 STABILITY                  

 MODEL                      

 COMPLEXITY                 

 PERFORMANCE                

 MODELS                     

 

NEURAL NETWORKS                 
 SYSTEMS                         
 OPTIMIZATION                    
 GENETIC ALGORITHMS              
 MODEL                           
 ALGORITHM                       
 COMPLEXITY                      
 NETWORKS                        
 NEURAL NETWORK                  
 IDENTIFICATION                  

Neural networks and
Genetic algorithms 

Observation : The overlaps shared by split communities reveal their
predecessor.
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Conclusion and perspectives

Conclusion : We have explored computational techniques to study
community organization of complex networks with
overlapping nodes.

Future work : Visualization tool for overlapping community
evolution.
Add more constraints to smooth the shifts of
community members.
Analyse more dynamic networks : benchmarks for
evaluating algorithms and structural properties in
dynamic views.
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Q.Wang and E.Fleury, Detecting overlapping communities in
graphs, European conference on Complex Systems 2009,
University of Warwick, UK
Q.Wang and E.Fleury, Uncovering Overlapping Community
Structure, 2nd Workshop on Complex Networks, Brazil, 2010
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