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Background Community structure

Problem
Our contributions

Community structure

A complex network has community structure if the nodes of the
networks are easily grouped into sets of nodes such that each set of
nodes is densely connected internally.

™ e @ Adjacency network of
7 common adjectives and
o nouns in the novel David
Copperfield by Charles

e rBickens [New06].
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* @ “Communities refer to
system functions
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Community structure

Communities may overlap.
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Background

Community structure
Problem
Our contributions

Overlapping community structure

a division of a graph into disjoint | A division of a graph into overlapping

communities, such that each (or fuzzy) communities, such that
node belongs to a unique some nodes are shared by several
community. communities.
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Dynamic networks

@ Network structure dynamically evolves in time.
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Dynamic networks

@ Network structure dynamically evolves in time.

@ Our second problem : Tracking community evolution in dynamic
networks
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Community dynamics

Scenarios in the evolution of communities by Gergely Palla et
al. [PBV07]

growth contraction
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merging
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Our contributions

@ Overlapping community detection

@ Tracking community evolution and identifying community
dynamics
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Overlapping community detection Fuzzy detection
Applications to real networks

Fuzzy detection

@ When running several
times the Louvain algorithm
on the same given network,
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Fuzzy detection

@ When running several
times the Louvain algorithm
on the same given network,
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Overlapping community detection Fuzzy detection
Applications to real networks

Fuzzy detection

@ When running several
times the Louvain algorithm
on the same given network,
we observe different
partitions.

@ "Oscillating” nodes are
possible overlapping
nodes.
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Overlapping community detection Fuzzy detection

Applications to real networks

Fuzzy detection

@ When running several
times the Louvain algorithm
on the same given network,
we observe different
partitions.

@ "Oscillating” nodes are
possible overlapping
nodes.

@ Problem : compute
P. = [P, |nxk Whose P, .,
represents the probability
of node ¢; belonging to the
community C;.
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Overlapping community detection Fuzzy detection
Applications to real networks

Fuzzy detection

Related work

An edge e = (i,)) is external if p; < a*(e.g. a* = 99.5%) J

A robust cluster is the composition of connected graph after removing
external edges

The core of the community is the robust cluster has the maximum
number of nodes.

1. Gfeller et al., Finding instabilities in the community structure of complex networks,
Physical review. E
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Overlapping community detection Fuzzy detection
Applications to real networks

Fuzzy detection

@ Detect robust clusters
e Several runs of Louvain algorithm to compute a co-appearance
matrix P = [Pij|uxn
@ Save the partition Py With the highest modularity
e Remove all external edges from Py
@ Adjust memberships of robust clusters
e Identify community core : ¢; = arg max, cc, |ci|, where Ci € Popy
e Compute P, = [P, ]
e Add robust cluster ¢; to community C; if p,, 2, > 8*(e.g. 8" = 10%)
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Overlapping community detection Fuzzy detection
Applications to real networks

Fuzzy detection
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Overlapping community detection Fuzzy detection
Applications to real networks

Datasets

@ Synthetic graphs containing hierarchical structure

e 16 small groups : k; = 30

@ 4 super groups : k, = 13
@ 1 group (modular overlaps) is shared by 2 super groups
@ for others, each group belongs to a unique super group.

o External links : k3 =5
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Performances in testing artificial networks

Co-annearance %

Conclusion : Fuzzy detection detects modular overlaps
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Overlapping community detection Fuzzy detection
Applications to real networks

Applications to Complex System Science

Complex System Science is a citation graph2.

@ Source : ISI Web of Clinicalp.Tg(chology
knowledge c,.,y, 1\

@ Node : an article (2000 - 2N "<
2009) ; contains keywords y s el
(complex systems) PN S AN

0 BRTRT . y Cons{pl‘lworks

@ Weight : bibliographic Spgctroscap A

coupling [Kes63] : s’ S/
. ‘R, N RJ| COmpi'enbé 8 ~g}i\\
Dynami bulence

Wi = o

! V IRi| Rj] 14 ,

@ Communities : research Growth technology ak@superiatti i
topics or theoretical fields. L)

Results of Louvain algorithm

2. Grauwin Sebastian, Jensen Pablo et al. Complex Systems Science : Dreams of
Universality, Reality of Interdisciplinarity. Journal of the American Society for Information
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Applications to Complex System Science

Results in views of modular overlaps

computer

science

|

Ecosystems Multi-agent

Systems
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Introduction
Our method

Community evolution in dynamic networks _
Applications

Introduction about community evolution

@ A dynamic graph G(V,€)
on a finite time sequence

1...Ais a sequence of G(1)
graph snapshots %

G(1),...,G(A)}.
{G(1) (A)} 1 ékgm
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Community evolution in dynamic networks

Introduction
Our method
Applications

Introduction about community evolution

@ A dynamic graph G(V, &)
on a finite time sequence
1...Ais a sequence of
graph snapshots

(G(1),...,G(A)}.

@ The evolution of a
community can be tracked
by its evolution path :
Evol(C;) :=
{Ci(0),...,Ci(6 + A)}

[eILLERZN[c]

Ci(1)

Ci(2)

St

Ci(3)

&(4)
t
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Community evolution in dynamic networks

Community dynamics

merging

t — t+1
t —_— t+1

birth

[eILLER/N ]
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Community evolution in dynamic networks

Community dynamics

contraction
t — t+1
splitting §
=
\\ |
=
o
t —_ t+1
birth death
ig;‘\\
t —_— t+1 t —_— t+1

Community dynamics make community evolution
become difficult to track.
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Community evolution in dynamic networks

Community dynamics

contraction

t — t+1
splitting §
=
e |
o« N
e}
t . t+1
birth death
@\\‘
t — t+1 t —_ t+1

Community dynamics make community evolution
become difficult to track.

However, the definition of community dynamics is a
problem.
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Introduction

@ Detect partitions, robust clusters by fuzzy detection algorithm at
each time step;

@ Map clusters through group persistence.
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Introduction
Our method

Community evolution in dynamic networks _
Applications

Our definition

@ Given a temporal cluster C;(¢) at time ¢,3

Definition (Community predecessor)

if Cj(r — 1) has the maximum overlap size at time r — 1,
such that Cj(r — 1) — Ci(z)

Definition (Community successor)

if Ci(z + 1) has the maximum overlap size at time 7 + 1,
such that C;(z) < Ci(z+ 1)

3. Q.Wang and E.Fleury, Understanding community evolution in Complex systems
science, 1st International Workshop on Dynamicity, December 12, Collocated with OPO-
DIS 2011, Toulouse, France
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Asymmetrical relationship

@ This asymmetrical property allows us to characterize community

dynamics :
t=1 t=2 t=3 t=4
r @ o0 J(E)
CDENGD
(G
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Community evolution in dynamic networks

Asymmetrical relationship

@ This asymmetrical property allows us to characterize community
dynamics :

Ci:

C:

Cs:
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Community evolution in dynamic networks

Asymmetrical relationship

@ This asymmetrical property allows us to characterize community
dynamics :

Ci:

C:

GG

[eILTERY7e] Overlapping community detection in dynamic networks 28/39




Introduction
Our method
Applications

Community evolution in dynamic networks

Asymmetrical relationship

@ This asymmetrical property allows us to characterize community
dynamics :

Ci:

Cr:

Cs - Emerge @_@ Disappear
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Complex cases

Ci: —

C: P—

GO CD S DS NCD
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Applications

A dynamic blog network

@ Dynamic blog networks 4 :
e approximately six thousand blogs
o Aggregate links between blogs every day(120 days)
e 8 time steps (14 days as a time interval)

4. Abdelhamid Salah brahim, Matthieu Latapy et al. Citations among blogs in a hie-
rarchy of communities : method and case study. Journal of Computational Science, Vol
2(3), 2011

[eILTER7e] Overlapping community detection in dynamic networks 30/39



lution in dynamic n rk 0
Community evolution in dynamic networks Applications

Application to a dynamic blog network

@00000
L o

G ol s obes ol e

Each community whose evolution is survival shares the
same topic.
New community corresponds to the event of new blogs.
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The past history of complex system science network

| Time period | Number of nodes | Number of edges | Total weight |

1985-1994 20286 1004458 183594

1990-1999 62040 6179802 1.0569e+06
1995-2004 109458 12662556 2.1206e+06
2000-2009 141163 19603888 3.6701e+06

TABLE: Properties of the past history of Complex System Sciences.
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Application to a dynamic citation network

y @s
COMPI NETs

EXPRERSION —

cofBLex

FLOW
S. pémbe

DFB !ERS
S
PHOTOSYSTEM-Il

ISING-ﬁiODEL
COII@XES co @ ES COMPLEXES COMPLEXES
sec A 0 0

1 e
e

[eILTERY7e] Overlapping community detection in dynamic networks



New scientific topics or fields




Introduction
Our method
Applications

Split events in the past history of Complex System
Sciences

Community evolution in dynamic networks

Neural networks and u svstems
. ® NEURAL NETWORKS
Computation theory
®m IDENTIFICATION
| DESIGN
NETWORKS
MODEL
PERFORMANCE
m MODELS

Neural v

\ Neural

networks Y etworks ’A

B NEURAL NETWORKS
® SYSTEMS
OPTIMIZATION

- '

1
B GENETIC ALGORITHMS

| MODEL
ALGORITHM
Neural networks and = ienvoms

® NEURAL NETWORK

Genetic algorithms IDENTIFICATION

Observation : The overlaps shared by split communities reveal their
predecessor.
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Conclusion and perspectives

Conclusion and perspectives

Conclusion : We have explored computational techniques to study
community organization of complex networks with
overlapping nodes.

Future work : @ Visualization tool for overlapping community
evolution.

@ Add more constraints to smooth the shifts of
community members.

@ Analyse more dynamic networks : benchmarks for
evaluating algorithms and structural properties in
dynamic views.
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Conclusion and perspectives

List of publications

@ International Conferences

e Q.Wang and E.Fleury, Detecting overlapping communities in
graphs, European conference on Complex Systems 2009,
University of Warwick, UK

e Q.Wang and E.Fleury, Uncovering Overlapping Community
Structure, 2nd Workshop on Complex Networks, Brazil, 2010

e Q.Wang and E.Fleury, Mining time-dependent communities,
Latin-American Workshop on Dynamic Networks, Argentina, 2010

e Q.Wang and E.Fleury, Community detection with fuzzy community
structure, The First Workshop on Social Network Analysis in
Applications, ASONAM 2011 :International Conference on
Advances in Social Networks Analysis and Mining,Taiwan, 2011
(Best paper award)

e Q.Wang and E.Fleury, Understanding community evolution in
Complex systems science, 1st International Workshop on
Dynamicity, December 12, Collocated with OPODIS 2011,
Toulouse, France
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