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Introduction

The analysis of networks:
B s a recent but increasingly important field in statistical learning,
m with applications in domains ranging from biology to history:

O biology: analysis of gene regulation processes,
O social sciences: analysis of political blogs,
O history: visualization of medieval social networks.

Two main problems are currently well addressed:

® visualization of the networks,

m clustering of the network nodes.
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Introduction

The analysis of networks:
B s a recent but increasingly important field in statistical learning,
m with applications in domains ranging from biology to history:

O biology: analysis of gene regulation processes,
O social sciences: analysis of political blogs,
O history: visualization of medieval social networks.

Two main problems are currently well addressed:
® visualization of the networks,

m clustering of the network nodes.

Network comparison:
B s a still emerging problem is statistical learning,
® which is mainly addressed using graph structure comparison,

® but limited to binary networks.

——l



Introduction

] 0 00
o o
.
[}
®* o oo 000
o o
. °
) ° il 'Y 020 °
e 1 ey ¢ gol®
0 iiach 0 9.00 °
e \” ° ® o 20 o
e ) @ oO
), N
)
° °® ® .
e o
o0, o °
... o @ [}
°® o
. ° e 0e? |
N <A
oe e %0 o °
os O Ve ]
o e ° .
LN Taiad *® o
L ] ..

Figure : Clustering of network nodes: communities (left) vs. structures with hubs
(right).
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Introduction

Key works in probabilistic models:

stochastic block model (SBM) by Nowicki and Snijders (2001),
latent space model by Hoff, Handcock and Raftery (2002),
latent cluster model by Handcock, Raftery and Tantrum (2007),
mixed membership SBM (MMSBM) by Airoldi et al. (2008),
mixture of experts for LCM by Gormley and Murphy (2010),
MMSBM for dynamic networks by Xing et al. (2010),
overlapping SBM (OSBM) by Latouche et al. (2011).

A good overview is given in:

M. Salter-Townshend, A. White, |. Gollini and T. B. Murphy, “Review of
Statistical Network Analysis: Models, Algorithms, and Software”,
Statistical Analysis and Data Mining, Vol. 5(4), pp. 243-264, 2012.
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Introduction: the historical problem

Our colleagues from the LAMOP team were interested in answering the
following question:

Does the Church was organized in the same way
within the different kingdoms in Merovingian Gaul?




Introduction: the historical problem

Our colleagues from the LAMOP team were interested in answering the
following question:

Does the Church was organized in the same way
within the different kingdoms in Merovingian Gaul?

To this end, they have build a relational database:

m from written acts of ecclesiastical councils that took place in Gaul during
the 6th century (480-614),

B those acts report who attended (bishops, kings, dukes, priests, monks, ...)
and what questions (regarding Church, faith, ...) were discussed,

m they also allowed to characterize the type of relationship between the
individuals,

® it took 18 months to build the database.
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Introduction: the historical problem

The database contains:

m 1331 individuals (mostly clergymen) who
participated to ecclesiastical councils in
Gaul between 480 and 614,

m 4 types of relationships between
individuals have been identified (positive,
negative, variable or neutral),

m each individual belongs to one of the 5
regions of Gaul:

0 3 kingdoms: Austrasia, Burgundy and
Neustria,
O 2 provinces: Aquitaine and Provence.

m additional information is also available: social positions, family
relationships, birth and death dates, hold offices, councils dates, ...
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Introduction: the historical problem

Neustria Provence  Unknown Aquitaine Austrasia Burgundy
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Introduction

Expected difficulties:

B existing approaches can not analyze networks with categorical edges and
a partition into subgraphs,

® comparison of subgraphs has, up to our knowledge, not been addressed in
this context,

B a “source effect” is expected due to the overrepresentation of some places
(Neustria through “Ten History Book” of Gregory of Tours) or individuals
(hagiographies).




Introduction

Expected difficulties:

B existing approaches can not analyze networks with categorical edges and
a partition into subgraphs,

® comparison of subgraphs has, up to our knowledge, not been addressed in
this context,

® 3 “source effect” is expected due to the overrepresentation of some places
(Neustria through “Ten History Book™" of Gregory of Tours) or individuals
(hagiographies).

Our approach:

® we consider directed networks with typed (categorical) edges and for
which a partition into subgraphs is known,

B we base our comparison on the cluster organization of the subgraphs,

B we propose an extension of SBM which takes into account typed edges
and subgraphs,
® subgraph comparison is possible afterward using model parameters.
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The random subgraph model (RSM)




The random subgraph model (RSM)

Before the maths, an example of an RSM network:

We observe:

® the partition of the network into
S = 2 subgraphs (node form),

m the presence A;; of directed edges
between the N nodes,

® the type X;; € {1,...,C} of the
edges (C' = 3, edge color).

AR AT D
X =\
B SEN

7 \:
AX = 2 X
X3 ,ax‘ \

/A\‘Y —

Figure : Example of an RSM network.
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The random subgraph model (RSM)

Before the maths, an example of an RSM network:

We observe:

® the partition of the network into
S = 2 subgraphs (node form),

m the presence A;; of directed edges
between the N nodes,

® the type X;; € {1,...,C} of the
edges (C' = 3, edge color).

We search:

® 3 partition of the node into K =3
groups (node color),

Figure : Example of an RSM network.

® which overlap with the partition
into subgraphs.
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The random subgraph model (RSM)

The network (represented by its adjacency matrix X) is assumed to be
generated as follows:

® the presence of an edge between nodes i and j is such that:

Aij ~ B(’YSiSj)

where s; € {1,...,.S} indicates the (observed) subgraph of node i,




The random subgraph model (RSM)

The network (represented by its adjacency matrix X) is assumed to be
generated as follows:

® the presence of an edge between nodes i and j is such that:
Aij ~ B(’YSiSj)

where s; € {1,...,.S} indicates the (observed) subgraph of node i,

m each node i is as well associated with an (unobserved) group among K
according to:

Zi ~ M(OZSZ.)

where o, € [0,1]% and Zle sk =1,




The random subgraph model (RSM)

The network (represented by its adjacency matrix X) is assumed to be
generated as follows:

® the presence of an edge between nodes i and j is such that:
Aij ~ B('Ysl's]-)

where s; € {1,...,.S} indicates the (observed) subgraph of node i,
m each node i is as well associated with an (unobserved) group among K
according to:
Zi ~ M(Oési)
where o, € [0,1]% and Zle sk =1,

® each edge X;; can be finally of C different (observed) types and such
that:
Xij|AijZiijl =1~ M(Hkl)

where TI;; € [0,1]¢ and Z,?:l gie = 1.
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The random subgraph model (RSM)

Notations | Description
X Adjacency matrix. X;; € {0,...,C} indicates the edge type
A Binary matrix. A;; = 1 indicates the presence of an edge
Z Binary matrix. Z;; = 1 indicates that i belongs to cluster k
N Number of vertices in the network
K Number of latent clusters
S Number of subgraphs
C Number of edge types
o o,y is the proportion of cluster k in subgraph s
II Ik is the probability of having an edge of type ¢
between vertices of clusters k and [
~ ~rs probability of having an edge between vertices of subgraphs r and s

Table : Summary of the notations.




The random subgraph model (RSM)

Remark 1:

m the RSM model separates the roles of the known partition and the latent
clusters,

® this was motivated by historical assumptions on the creation of
relationships during the 6th century,

indeed, the possibilities of connection were preponderant over the type of
connection and mainly dependent on the geography.




The random subgraph model (RSM)

Remark 1:

m the RSM model separates the roles of the known partition and the latent
clusters,

® this was motivated by historical assumptions on the creation of
relationships during the 6th century,

® indeed, the possibilities of connection were preponderant over the type of
connection and mainly dependent on the geography.

Remark 2:

® an alternative approach would consist in allowing X;; to directly depend
on both the latent clusters and the partition,

® however, this would dramatically increase the number of model
parameters (K25%(C' + 1) + SK instead of S? + K2C + SK),

m if S=6, K =6 and C = 4, then the alternative approach has 6 516
parameters while RSM has only 216.

14



The random subgraph model (RSM)

We consider a Bayesian framework:

® the previous model is fully defined by its joint distribution:
p(X, A, Z]a, v, 1) = p(X|A, Z,IN)p(A]y)p(Z]a),

® which we complete with conjuguate prior distributions for model
parameters:

0 the prior distribution for « is:
p(yrs) = Beta(ars, brs),
O the prior distribution for « is:
plas) = Dir(xs),
0 the prior distribution for IT is:

p(HM) = Dir (Ekl ) .

15
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Figure : A graphical representation of the RSM model.
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Model inference

Due to the Bayesian framework introduces above:

B we aim at estimating the posterior distribution p(Z, a, v, II| X, A), which
in turn will allow us to compute MAP estimates of Z and («, v, 1I),

B 3s expected, this distribution is not tractable and approximate inference
procedures are required,

m the use of MCMC methods is obviously an option but MCMC methods
have a poor scaling with sample sizes.




Model inference

Due to the Bayesian framework introduces above:

B we aim at estimating the posterior distribution p(Z, a, v, II| X, A), which
in turn will allow us to compute MAP estimates of Z and («, v, 1I),

B 3s expected, this distribution is not tractable and approximate inference
procedures are required,

m the use of MCMC methods is obviously an option but MCMC methods
have a poor scaling with sample sizes.

We chose to use variational approaches:
B because they allow to deal with large networks (N > 1000),

B recent theoretical results (Celisse et al., 2012; Mariadassou and Matias,
2013) gave new insights about convergence properties of variational
approaches in this context.
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The EM, VEM and VBEM algorithms

First, it necessary to write the log-likelihood as:

log(p(X10)) = L(q(Z);0) + KL(¢(Z2)||p(Z] X, 0)),

where:

m L(q(Z);0) =3, q(2)log(p(X, Z|0)/q(Z)) is a lower bound of the
log-likelihood,

= KL(g(2)|[p(Z]X,0)) = = >_ 5 q(2) log(p(X|Z,0)/q(Z)) is the KL
divergence between ¢(Z) and p(Z|X,6).




The EM, VEM and VBEM algorithms

First, it necessary to write the log-likelihood as:

log(p(X10)) = L(q(Z);0) + KL(¢(Z2)||p(Z] X, 0)),

where:

m L(q(Z);0) =3, q(2)log(p(X, Z|0)/q(Z)) is a lower bound of the
log-likelihood,

= KL(g(2)|[p(Z]X,0)) = = >_ 5 q(2) log(p(X|Z,0)/q(Z)) is the KL
divergence between ¢(Z) and p(Z|X,6).

The EM algorithm:
B E step: 6 is fixed and £ is maximized over ¢ = ¢*(Z) = p(Z|X, )
= M step: £(¢*(Z),0°9) is now maximized over 6

L (2),6°") = p(Z|X. 679 log(p(X, Z16) /p(Z) X, 6°'))
4

= Ellog(p(X, Z|0)]6°'?] + c.
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The EM, VEM and VBEM algorithms

The variational approach:
® let us now suppose that p(X, Z|6) is, for some reason, intractable,

m the variational approach restrict the range of functions for ¢ such that
the problem is tractable,

® 3 popular variational approximation is to assume that ¢ factorizes:
9(2) = [[ (2
i

The VEM algorithm:

m V-E step: 0 is fixed and £ is maximized over ¢ =
log ¢j(Z;) = Eixjllogp(X, Z|0)] + ¢
® V-M step: L£(¢*(Z),6°¢) is now maximized over
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The EM, VEM and VBEM algorithms

We consider now the Bayesian framework:
B we aim at estimating the posterior distribution p(Z, 6| X),
® we have here the relation:

log(p(X)) = L(q(Z,0)) + KL(q(Z,0)||p(Z, 0| X)),

® we also assume that ¢ factorizes over Z and 6:
0(2,0) = [ [ 4:(Zi)a0 (6).

The VBEM algorithm:

m VB-E step: ¢p(0) is fixed and £ is maximized over the ¢; =
log ¢j(Z;) = Eizjellogp(X, Z,0)] +c

® VB-M step: all ¢;(Z;) are now fixed and L is maximized over gy =
log ¢;(0) = Ez[logp(X, Z,0)] + ¢

21



The VBEM algorithm for RSM

Variational Bayesian inference in our case:
B we aim at approximating the posterior distribution p(Z, a, v, 1| X, A)

m we therefore search the approximation ¢(Z, o, v, IT) which maximizes
L(q) where:

logp(X, A) = L(q) + KL(q||p(.| X, 4)),

m and ¢ is assumed to factorize as follows:

9(Z,0,7,10) = [[a(Z) [ ales) [T a(ve) T ] a(TT0)-

The VBEM algorithm for RSM:
m E step: compute the update parameter 7; for ¢(Z;),

m M step: compute the update parameters x, 7, = for respectively q(as),
q(7st) and q(ITx).
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The VBEM algorithm for RSM: the M step

The M step of the VBEM algorithm: the VBEM update step for the
distributions ¢(ay) is:

log ¢*(as) = By ors y millogp(X, A, Z, oy, TT)] + ¢

K
:Zlog(ask){xsk+z5 v—snk—l} ¢,
k=1




e __________________________________________________________________________
The VBEM algorithm for RSM: the M step

The M step of the VBEM algorithm: the VBEM update step for the
distributions ¢(ay) is:

IOg q*(Oés) = EZ,a\S,'y,H[logp(X A Z @ ’YaH)] +c
K
= Zlog(ask) {Xsk —1-25 P = S)Tik — 1} ¢,
k=1
which is the functional form for a Dirichlet distribution:

q(as) = Dir(as; xs), Vs € {1,..., S}

where x4, = X(s)k + Zfil §(r; = s)Ti, Ve € {1,..., K}.

23



The VBEM algorithm for RSM: the M step

The M step of the VBEM algorithm: the VBEM update step for the
distributions g(ay), q(7vs:) and q(Ilg;) are:

B g(as) = Dir(as; xs), Vs € {1,..., S},

" q(vrs) = Beta(yps; ars, brs), V(r, 8) € {1,...,5}2,

w g(Ilyy;) = Dir(Hg;; Z), V(k, 1) € {1,...,K}?,

where:

m o = X% + N, (s = 8) Tk, Y € {1,..., K},

B ars = a(r)s + Zri:r,rj:s (Aij)v bys = bgs + Zr,;:r,rj:s(l - Aij)’

== Eglc + Z?;J (5(Xij = C)Tiijl,vc S {1,. . ,C}
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The VBEM algorithm for RSM: the E step

The E step of the VBEM algorithm: the VBEM update step for the
distribution ¢(Z;) is given by:

log q*(ZZ) = EZ\i,a,'y,H[logp(Xv Aa Zv a, 7, H)] +c

which implies that
9(Zi) = M(Zi; 1,m), Vi=1,.., N

where

Til X €XP ("t/f Xrs k an >
N C
+ exp {Z 5 Z] = C)le <¢(Eklc) — ’(/J(Z Ek:lu)) }
J#i u=1
N C
+ exp {Z 5 j’L = C)le <¢(Elkc) — ’(/J(Z Elku)) } .
#1i
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Initialization and choice of K

Initialization of the VBEM algorithm:
® the VBEM is known to be sensitive to its initialization,

B we propose a strategy based on several k-means algorithms with a
specific distance:

N

25 Xin # Xjn)AinAjn + > 6(Xni # Xnj) AniAn;.
h=1




Initialization and choice of K

Initialization of the VBEM algorithm:

m the VBEM is known to be sensitive to its initialization,

® we propose a strategy based on several k-means algorithms with a
specific distance:

N

25 Xin # Xjn) mAh+Z5 Xni # Xnj)AniAn;.
h=1

Choice of the number K of groups:

® once the VBEM algorithm has converged, the lower bound £(q) is a
good approximation of the integrated log-likelihood log p(X, A),

B we thus can use £(q) as a model selection criterion for choosing K,

® if computed right after the M step,

Zl g( am, - +Z og( +Zl C(Ekl))sz:zK:nk log(Tik)-
b0 C( 0 Cc(=Y) =

afs, b2, —1k=1
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Numerical experiments




Experimental setup

We considered 3 different situations:

m S1: network without subgraphs and
with a preponderant proportion of
edges of type 1,

A
)\&";'41,7‘\\ A

g /vm‘!‘?’%‘“! e
/)

m S2 : network without subgraphs and \

Y
with balanced proportions of the three YR 1/ N
edge types,

® S3: network with 3 subgraphs and
with balanced proportions of the three
edge types.

Global setup:

® in all cases, the number of (unobserved) groups is K = 3 and the
network size is N = 100,

® we use the adjusted Rand index (ARI) for evaluating the clustering
quality (and thus the model fitting).
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Choice of the number K of groups

First, a model selection study:
® we aim at validating the use of £(q) as model selection criteria,

® we simulated 50 RSM networks according to scenario 1 and with
N =100,

® and applied our VB-EM algorithm for different values of K (K = 2, ..., 5),

m the actual value of K is K = 3.




Choice of the number K of groups

Criterion L ARI repartition
8
g B o JE— —
I - i - ; ;
i ] | .
: — 3
s - - | z ; ° i
. — : £ ; ° :
g | . ] |
| : -
| = | |
; ° :
&1 — 2 —
T T T T T T T T
2 3 4 5 2 3 4 5
K K

Table : Lower bound £ and ARI averaged over 50 networks simulated according to
the RSM model.
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Comparison with other SBM-based approaches

Second, a comparison with other SBM-based methods:

® binary SBM: the original SBM algorithm was applied on a collapsed
version of the data (only the presence of edges); the mixer package was
used,

® binary SBM (type 1, 2 or 3): the original SBM algorithm was applied on
a collapsed version of the data (only edges of type 1, 2 or 3); the mixer
package was used,

® typed SBM: we had to implement the categorical version of SBM since it
is not available in existing software; this version of SBM will be available
in mixer soon,

® the studied methods were applied to the the three scenarii and results are
averaged over 50 networks.
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Comparison with other SBM-based approaches

Method Scenario 1 Scenario 2 Scenario 3

binary SBM (presence) | 0.001 + 0.012 0.001 £ 0.013 0.239 + 0.061
binary SBM (type 1) 0.976 £+ 0.071 0.494 + 0.233 -0.372 £+ 0.262
binary SBM (type 2) 0.001 £ 0.006 | -0.003 4 0.006 | 0.179 =+ 0.097
binary SBM (type 3) 0.959 4+ 0.121 0.519 £+ 0.219 0.367 £ 0.244
Typed SBM 0.694 + 0.232 0.472 £+ 0.339 0.360 £+ 0.162
RSM 1.000 + 0.000 | 0.981 + 0.056 0.939 + 0.097

Table : ARI averaged over 50 networks simulated according to the three
considered situations.
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Analysis of an ecclesiastical network




The ecclesiastical network

The data:

m 1331 individuals (mostly clergymen) who
participated to ecclesiastical councils in
Gaul between 480 and 614,

® 4 types of relationships between
individuals have been identified (positive,
negative, variable or neutral),

® each individual belongs to one of the 5
regions (3 kingdoms et 2 provinces).

Our modeling allows a multi-level analysis:

m 7 allows to characterize the found clusters through social positions of the
individuals,

® parameter II describes the relations between the found clusters,
® parameter y describes the connections between the subgraphs,

® parameter « describes the cluster repartition in the subgraphs.
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RSM results: the latent clusters

35
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Cluster 1

Benp Prest Aot Esi  Due Mok Dexcon Kig  Guesn Arhdsscon

Cluster 3

Benp Prest Aot Esi  Due Mok Dexcon Kig  Guesn Arhdsscon

Cluster 5

Benop Prest Aot Esi  Due Mok Dexcon Kig  Guesn Achdsscon

Characterization of the K = 6 clusters found by RSM.
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Cluster 4
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Cluster &
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RSM results: the latent clusters

The latent clusters from the historical point of view:

® clusters 1 and 3 correspond to local, provincial of diocesan councils,
mostly interested in local issues (ex: council of Arles, 554),

® clusters 2 and 6 correspond to councils dedicated to political questions,
usually convened by a king (ex: Orleans, 511),

® clusters 4 and 5 correspond to aristocratic assemblies, where queens and
duke and earls are present (ex: Orleans, 529).




RSM results: the relationships between clusters

positive

cluster 3

cluster 2

cluster 1

negative

cluster 1

cluster 3

cluster 2

Figure : Characterization of the relationships between clusters (parameter II).
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RSM results: the relationships between clusters

variable

cluster 3

cluster 2

cluster 1

neutral

cluster 3

cluster 2

Figure : Characterization of the relationships between clusters (parameter II).
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RSM results: the relationships between clusters

The clusters relationships from the historical point of view:

® positive relations between clusters 3, 5 and 6 mainly corresponds to
personal friendships between bishops (source effect),

® negative and variable relations betweens clusters 4, 5 and 6 report the
conflicts in the hierarchy of the power,

® neutral relations between clusters 1, 3 and 6 were expected because they
deal with different issues (local / political).




RSM results: the relationships between regions

Neustria ~ Provence ~ Unknown  Aquitaine  Austrasia  Burgundy
-~ o w IS o e
N
@
H
e
>
) ) | 1 !
@ 13 I » =
o ° o ° B

Neustria  Provence  Unknown  Aquitaine  Austrasia  Burgundy

Figure : Characterization of the relationships between the regions (parameter  in
log scale).
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RSM results: comparison of the regions

cluster 1
cluster 2
cluster 3
cluster 4
cluster 5
cluster 6

5
LI I B |

Proportions
0.

Neustria  Provence Unknown Aquitaine Austrasia Burgundy total

Figure : Characterization of regions through cluster repartition (parameter «).
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RSM results: comparison of the regions

quitaine
0
2
Newgifa
H v Unknoy
o |
S Austrasia
o
=
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0
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0 Provence
2
! T T T T T
-1 0 1 2 3

Figure : PCA for compositional data on the parameter «.
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Conclusion
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Conclusion

Our contribution:

® a3 model for network clustering which takes into account an existing
partition of the network into subgraphs,

® this modeling allows afterward a comparison of the subgraphs,
m inference is done in a Bayesian framework using a VBEM algorithm,

® our approach has been applied to a complex historical network.

Software:
package Rambo for the R software is available on the CRAN
Preprint:

http://arxiv.org/abs/1212.5497
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Further work

Interesting problems to address:
m discrete edges which are frequent in many applications,

® temporality of the network (evolution of relations, offices or social
positions),

® visualization of this kind of networks,

® procedures to test the similarity of subgraphs ...




Further work

Interesting problems to address:
m discrete edges which are frequent in many applications,

® temporality of the network (evolution of relations, offices or social
positions),

® visualization of this kind of networks,

® procedures to test the similarity of subgraphs ...

One Ph.D. position is available on this topic!
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