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Introduction

The analysis of networks:
� is a recent but increasingly important field in statistical learning,
� with applications in domains ranging from biology to history:

� biology: analysis of gene regulation processes,
� social sciences: analysis of political blogs,
� history: visualization of medieval social networks.

Two main problems are currently well addressed:
� visualization of the networks,
� clustering of the network nodes.

Network comparison:
� is a still emerging problem is statistical learning,
� which is mainly addressed using graph structure comparison,
� but limited to binary networks.
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Introduction

Figure : Clustering of network nodes: communities (left) vs. structures with hubs
(right).

4



Introduction

Key works in probabilistic models:
� stochastic block model (SBM) by Nowicki and Snijders (2001),
� latent space model by Hoff, Handcock and Raftery (2002),
� latent cluster model by Handcock, Raftery and Tantrum (2007),
� mixed membership SBM (MMSBM) by Airoldi et al. (2008),
� mixture of experts for LCM by Gormley and Murphy (2010),
� MMSBM for dynamic networks by Xing et al. (2010),
� overlapping SBM (OSBM) by Latouche et al. (2011).

A good overview is given in:
� M. Salter-Townshend, A. White, I. Gollini and T. B. Murphy, “Review of

Statistical Network Analysis: Models, Algorithms, and Software”,
Statistical Analysis and Data Mining, Vol. 5(4), pp. 243–264, 2012.
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Introduction: the historical problem

Our colleagues from the LAMOP team were interested in answering the
following question:

Does the Church was organized in the same way
within the different kingdoms in Merovingian Gaul?

To this end, they have build a relational database:
� from written acts of ecclesiastical councils that took place in Gaul during

the 6th century (480-614),
� those acts report who attended (bishops, kings, dukes, priests, monks, ...)

and what questions (regarding Church, faith, ...) were discussed,
� they also allowed to characterize the type of relationship between the

individuals,
� it took 18 months to build the database.
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Introduction: the historical problem

The database contains:
� 1331 individuals (mostly clergymen) who

participated to ecclesiastical councils in
Gaul between 480 and 614,

� 4 types of relationships between
individuals have been identified (positive,
negative, variable or neutral),

� each individual belongs to one of the 5
regions of Gaul:
� 3 kingdoms: Austrasia, Burgundy and

Neustria,
� 2 provinces: Aquitaine and Provence.

� additional information is also available: social positions, family
relationships, birth and death dates, hold offices, councils dates, ...
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Introduction: the historical problem

       Neustria               Provence      Unknown         Aquitaine         Austrasia              Burgundy

Figure : Adjacency matrix of the ecclesiastical network (sorted by regions).8



Introduction

Expected difficulties:
� existing approaches can not analyze networks with categorical edges and

a partition into subgraphs,
� comparison of subgraphs has, up to our knowledge, not been addressed in

this context,
� a “source effect” is expected due to the overrepresentation of some places

(Neustria through “Ten History Book” of Gregory of Tours) or individuals
(hagiographies).

Our approach:
� we consider directed networks with typed (categorical) edges and for

which a partition into subgraphs is known,
� we base our comparison on the cluster organization of the subgraphs,
� we propose an extension of SBM which takes into account typed edges

and subgraphs,
� subgraph comparison is possible afterward using model parameters.
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The random subgraph model (RSM)

Before the maths, an example of an RSM network:

Figure : Example of an RSM network.

We observe:
� the partition of the network into
S = 2 subgraphs (node form),

� the presence Aij of directed edges
between the N nodes,

� the type Xij ∈ {1, ..., C} of the
edges (C = 3, edge color).

We search:
� a partition of the node into K = 3

groups (node color),
� which overlap with the partition

into subgraphs.
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The random subgraph model (RSM)

The network (represented by its adjacency matrix X) is assumed to be
generated as follows:
� the presence of an edge between nodes i and j is such that:

Aij ∼ B(γsisj )

where si ∈ {1, ..., S} indicates the (observed) subgraph of node i,

� each node i is as well associated with an (unobserved) group among K
according to:

Zi ∼M(αsi)

where αs ∈ [0, 1]K and
∑K
k=1 αsk = 1,

� each edge Xij can be finally of C different (observed) types and such
that:

Xij |AijZikZjl = 1 ∼M(Πkl)

where Πkl ∈ [0, 1]C and
∑C
c=1 Πklc = 1.
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The random subgraph model (RSM)

4 Y. JERNITE ET AL.

Notations Description

X Adjacency matrix. Xij ∈ {0, . . . , C} indicates the edge type
A Binary matrix. Aij = 1 indicates the presence of an edge
Z Binary matrix. Zik = 1 indicates that i belongs to cluster k
N Number of vertices in the network
K Number of latent clusters
S Number of subgraphs
C Number of edge types
α αsk is the proportion of cluster k in subgraph s
Π Πklc is the probability of having an edge of type c

between vertices of clusters k and l
γ γrs probability of having an edge between vertices of subgraphs r and s

Table 1
Summary of the notations used in the paper.

the model, we also consider the binary matrix A with entries Aij such that
Ai,j = 1 ⇐⇒ Xi,j #= 0.

We also emphasize that the observed partition P induces a decomposition
of the graph into subgraphs where each class of vertices corresponds to a
specific subgraph. We introduce the variable si which takes its values in
{1, . . . , S} and is used to indicate in which of the subgraphs vertex i belongs,
for i ∈ {1, . . . , N}.

2.1. The probabilistic model. The data is assumed to be generated in
three steps. First, the presence of an edge from vertex i to vertex j is sup-
posed to follow a Bernouilli distribution whose parameter depends on the
subgraphs si and sj only:

Ai,j ∼ B(γsi,sj).

Each vertex i is then associated to a latent cluster with a probability de-
pending on si. In practice, if we assume for now that the number K of latent
clusters is known, the variable Zi is drawn from a multinomial distribution:

Zi ∼ M(1;αsi),

where

∀s ∈ 1, . . . , S,

K∑

k=1

αsk = 1.

A notable point of the model is that we allow each subgraph to have different
mixing proportions αs for the latent clusters. We denote hereafter α =
(α1, . . . ,αS). Finally, if an edge between i and j is present, i.e. Aij = 1,
its type Xij is sampled from a multinomial distribution with parameters

Table : Summary of the notations.
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The random subgraph model (RSM)

Remark 1:
� the RSM model separates the roles of the known partition and the latent

clusters,
� this was motivated by historical assumptions on the creation of

relationships during the 6th century,
� indeed, the possibilities of connection were preponderant over the type of

connection and mainly dependent on the geography.

Remark 2:
� an alternative approach would consist in allowing Xij to directly depend

on both the latent clusters and the partition,
� however, this would dramatically increase the number of model

parameters (K2S2(C + 1) + SK instead of S2 +K2C + SK),
� if S = 6, K = 6 and C = 4, then the alternative approach has 6 516

parameters while RSM has only 216.
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The random subgraph model (RSM)

We consider a Bayesian framework:
� the previous model is fully defined by its joint distribution:

p(X,A,Z|α, γ,Π) = p(X|A,Z,Π)p(A|γ)p(Z|α),

� which we complete with conjuguate prior distributions for model
parameters:
� the prior distribution for α is:

p(γrs) = Beta(ars, brs),

� the prior distribution for γ is:

p(αs) = Dir(χs),

� the prior distribution for Π is:

p(Πkl) = Dir(Ξkl).
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The random subgraph model (RSM)
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χ

P γ
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XijΠ
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a,b

Fig 1. Graphical representation of the RSM model.

depending on the latent clusters. Thus, if i belongs to cluster k and j to
cluster l:

Xi,j |ZikZjl = 1, Aij = 1 ∼ M(1,Πkl),

where the sum over the C types of each vector Πkl = (Πkl1, . . . ,ΠklC) is:

∀(k, l) ∈ {1, . . . ,K}2,

C∑

c=1

Πklc = 1.

If there is no edge between the two vertices, the entry Xij is simply set to
Xij = Aij = 0. Figure 1 presents the graphical model associated with the
RSM model and all notations are summarized in Table 1.

The model is therefore defined through the joint distribution:

p(X,A,Z |α,γ,Π) = p(X,A |Z,γ,Π)p(Z |α)

= p(X |A,Z,Π)p(A |γ)p(Z |α),

where

p(X |A,Z,Π) =
K∏

k,l

C∏

c=1

(Πc
kl)

∑N
i!=j δ(Xij=c)AijZikZjl ,

and

p(A |γ) =
N∏

i !=j

γ
Aij
ri,rj(1 − γri,rj)

1−Aij .

Finally,

p(Z |α) =
N∏

i=1

K∏

k=1

αZik
ri,k

.

Figure : A graphical representation of the RSM model.
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Model inference

Due to the Bayesian framework introduces above:
� we aim at estimating the posterior distribution p(Z,α, γ,Π|X,A), which

in turn will allow us to compute MAP estimates of Z and (α, γ,Π),
� as expected, this distribution is not tractable and approximate inference

procedures are required,
� the use of MCMC methods is obviously an option but MCMC methods

have a poor scaling with sample sizes.

We chose to use variational approaches:
� because they allow to deal with large networks (N > 1000),
� recent theoretical results (Celisse et al., 2012; Mariadassou and Matias,

2013) gave new insights about convergence properties of variational
approaches in this context.
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The EM, VEM and VBEM algorithms
First, it necessary to write the log-likelihood as:

log(p(X|θ)) = L(q(Z); θ) +KL(q(Z)||p(Z|X, θ)),

where:
� L(q(Z); θ) =

∑
Z q(Z) log(p(X,Z|θ)/q(Z)) is a lower bound of the

log-likelihood,
� KL(q(Z)||p(Z|X, θ)) = −∑Z q(Z) log(p(X|Z, θ)/q(Z)) is the KL

divergence between q(Z) and p(Z|X, θ).

The EM algorithm:
� E step: θ is fixed and L is maximized over q ⇒ q∗(Z) = p(Z|X, θ)
� M step: L(q∗(Z), θold) is now maximized over θ

L(q∗(Z), θold) =
∑

Z

p(Z|X, θold) log(p(X,Z|θ)/p(Z|X, θold))

= E[log(p(X,Z|θ)|θold] + c.
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The EM, VEM and VBEM algorithms

The variational approach:
� let us now suppose that p(X,Z|θ) is, for some reason, intractable,
� the variational approach restrict the range of functions for q such that

the problem is tractable,
� a popular variational approximation is to assume that q factorizes:

q(Z) =
∏

i

qi(Zi).

The VEM algorithm:
� V-E step: θ is fixed and L is maximized over q ⇒

log q∗j (Zj) = Ei 6=j [log p(X,Z|θ)] + c

� V-M step: L(q∗(Z), θold) is now maximized over θ

20



The EM, VEM and VBEM algorithms

We consider now the Bayesian framework:
� we aim at estimating the posterior distribution p(Z, θ|X),
� we have here the relation:

log(p(X)) = L(q(Z, θ)) +KL(q(Z, θ)||p(Z, θ|X)),

� we also assume that q factorizes over Z and θ:

q(Z, θ) =
∏

i

qi(Zi)qθ(θ).

The VBEM algorithm:
� VB-E step: qθ(θ) is fixed and L is maximized over the qi ⇒

log q∗j (Zj) = Ei 6=j,θ[log p(X,Z, θ)] + c

� VB-M step: all qi(Zi) are now fixed and L is maximized over qθ ⇒
log q∗θ(θ) = EZ [log p(X,Z, θ)] + c

21



The VBEM algorithm for RSM

Variational Bayesian inference in our case:
� we aim at approximating the posterior distribution p(Z,α, γ,Π|X,A)

� we therefore search the approximation q(Z,α, γ,Π) which maximizes
L(q) where:

log p(X,A) = L(q) +KL(q||p(.|X,A)),

� and q is assumed to factorize as follows:

q(Z,α, γ,Π) =
∏

q(Zi)
∏

q(αs)
∏

q(γst)
∏

q(Πkl).

The VBEM algorithm for RSM:
� E step: compute the update parameter τi for q(Zi),
� M step: compute the update parameters χ, γ, Ξ for respectively q(αs),
q(γst) and q(Πkl).
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The VBEM algorithm for RSM: the M step

The M step of the VBEM algorithm: the VBEM update step for the
distributions q(αs) is:

log q∗(αs) = EZ,α\s,γ,Π[log p(X,A,Z, α, γ,Π)] + c

=

K∑

k=1

log(αsk)

{
χ0
sk +

N∑

i=1

δ(ri = s)τik − 1

}
+ c,

which is the functional form for a Dirichlet distribution:

q(αs) = Dir(αs;χs),∀s ∈ {1, . . . , S}

where χsk = χ0
sk +

∑N
i=1 δ(ri = s)τik,∀k ∈ {1, . . . ,K}.
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where:
� χsk = χ0

sk +
∑N
i=1 δ(ri = s)τik,∀k ∈ {1, . . . ,K},

� ars = a0
rs +

∑
ri=r,rj=s(Aij), brs = b0rs +

∑
ri=r,rj=s(1−Aij),

� Ξklc = Ξ0
klc +

∑N
i6=j δ(Xij = c)τikτjl,∀c ∈ {1, . . . , C}.
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The VBEM algorithm for RSM: the E step
The E step of the VBEM algorithm: the VBEM update step for the
distribution q(Zi) is given by:

log q∗(Zi) = EZ\i,α,γ,Π[log p(X,A,Z, α, γ,Π)] + c

which implies that

q(Zi) =M(Zi; 1, τi), ∀i = 1, ..., N

where

τik ∝ exp

(
ψ(χri,k)− ψ(

K∑

l=1

χri,l)

)

+ exp





N∑

j 6=i

C∑

c=1

K∑

l=1

δ(Xij = c)τjl

(
ψ(Ξklc)− ψ(

C∑

u=1

Ξklu)

)


+ exp





N∑

j 6=i

C∑

c=1

K∑

l=1

δ(Xji = c)τjl

(
ψ(Ξlkc)− ψ(

C∑

u=1

Ξlku)

)
 .
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Initialization and choice of K

Initialization of the VBEM algorithm:
� the VBEM is known to be sensitive to its initialization,
� we propose a strategy based on several k-means algorithms with a

specific distance:

d(i, j) =

N∑

h=1

δ(Xih 6= Xjh)AihAjh +

N∑

h=1

δ(Xhi 6= Xhj)AhiAhj .

Choice of the number K of groups:
� once the VBEM algorithm has converged, the lower bound L(q) is a

good approximation of the integrated log-likelihood log p(X,A),
� we thus can use L(q) as a model selection criterion for choosing K,
� if computed right after the M step,

L(q) =

S∑
r,s

log(
B(ars, brs)

B(a0rs, b
0
rs)

) +

S∑
s=1

log(
C(χs)

C(χ0
s)

) +

K∑
k,l

log(
C(Ξkl)

C(Ξ0
kl)

)−
N∑

i=1

K∑
k=1

τik log(τik).

26



Initialization and choice of K

Initialization of the VBEM algorithm:
� the VBEM is known to be sensitive to its initialization,
� we propose a strategy based on several k-means algorithms with a

specific distance:

d(i, j) =

N∑

h=1

δ(Xih 6= Xjh)AihAjh +

N∑

h=1

δ(Xhi 6= Xhj)AhiAhj .

Choice of the number K of groups:
� once the VBEM algorithm has converged, the lower bound L(q) is a

good approximation of the integrated log-likelihood log p(X,A),
� we thus can use L(q) as a model selection criterion for choosing K,
� if computed right after the M step,

L(q) =
S∑
r,s

log(
B(ars, brs)

B(a0rs, b
0
rs)

) +

S∑
s=1

log(
C(χs)

C(χ0
s)

) +

K∑
k,l

log(
C(Ξkl)

C(Ξ0
kl)

)−
N∑

i=1

K∑
k=1

τik log(τik).

26



Plan de l’exposé

Introduction

The random subgraph model (RSM)

Model inference

Numerical experiments

Analysis of an ecclesiastical network

Conclusion

27



Experimental setup

We considered 3 different situations:
� S1 : network without subgraphs and

with a preponderant proportion of
edges of type 1,

� S2 : network without subgraphs and
with balanced proportions of the three
edge types,

� S3 : network with 3 subgraphs and
with balanced proportions of the three
edge types.

Global setup:
� in all cases, the number of (unobserved) groups is K = 3 and the

network size is N = 100,
� we use the adjusted Rand index (ARI) for evaluating the clustering

quality (and thus the model fitting).
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Choice of the number K of groups

First, a model selection study:

� we aim at validating the use of L(q) as model selection criteria,

� we simulated 50 RSM networks according to scenario 1 and with
N = 100,

� and applied our VB-EM algorithm for different values of K (K = 2, ..., 5),

� the actual value of K is K = 3.
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Choice of the number K of groups
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Fig 4. Repartition of the criterion (left panel) and ARI (right panel) over 50 networks
generated with the parameters of the first scenario.

data drawn according to its generative process. We were interested in the
comparison with the following models:

• binary SBM (presence): We fit a binary SBM using the R package
mixer (?) on the data by considering only the presence of the edges
and not the type of the edges.

• binary SBM (type 1, 2 or 3): We fit a binary SBM, still using the
Mixer package, on the graphs defined by taking only the edges of one
type.

• typed SBM : We consider here a SBM with discrete edges. Although
SBM was originally proposed in ? with discrete edges, existing soft-
wares only propose to fit a SBM on binary networks. We therefore
had to implement a version of the SBM which supports typed edges.
Note that, in this case, the types of edges are in {0, . . . , C}, where 0
corresponds to the absence of a relation.

• RSM : We run the VBEM algorithm, that we proposed in Section 2 for
the inference of the RSM model, with the available subgraph partition
and with 5 random initializations for each run.

Table ?? presents the average ARI values and standard deviations on
50 simulated graphs for each scenario and with binary SBM, typed SBM
and RSM. We point out that the inference is done with the actual number
of clusters and this for each method. One can observe that, for the first
scenario, the binary SBM based on the link presences and the type 2 SBM
always fail whereas type 1, type 3 and typed SBM work pretty well. Those

Table : Lower bound L and ARI averaged over 50 networks simulated according to
the RSM model.
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Comparison with other SBM-based approaches

Second, a comparison with other SBM-based methods:
� binary SBM: the original SBM algorithm was applied on a collapsed

version of the data (only the presence of edges); the mixer package was
used,

� binary SBM (type 1, 2 or 3): the original SBM algorithm was applied on
a collapsed version of the data (only edges of type 1, 2 or 3); the mixer
package was used,

� typed SBM: we had to implement the categorical version of SBM since it
is not available in existing software; this version of SBM will be available
in mixer soon,

� the studied methods were applied to the the three scenarii and results are
averaged over 50 networks.
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Comparison with other SBM-based approaches

Method Scenario 1 Scenario 2 Scenario 3
binary SBM (presence) 0.001 ± 0.012 0.001 ± 0.013 0.239 ± 0.061
binary SBM (type 1) 0.976 ± 0.071 0.494 ± 0.233 -0.372 ± 0.262
binary SBM (type 2) 0.001 ± 0.006 -0.003 ± 0.006 0.179 ± 0.097
binary SBM (type 3) 0.959 ± 0.121 0.519 ± 0.219 0.367 ± 0.244
Typed SBM 0.694 ± 0.232 0.472 ± 0.339 0.360 ± 0.162
RSM 1.000 ± 0.000 0.981 ± 0.056 0.939 ± 0.097

Table : ARI averaged over 50 networks simulated according to the three
considered situations.
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The ecclesiastical network

The data:
� 1331 individuals (mostly clergymen) who

participated to ecclesiastical councils in
Gaul between 480 and 614,

� 4 types of relationships between
individuals have been identified (positive,
negative, variable or neutral),

� each individual belongs to one of the 5
regions (3 kingdoms et 2 provinces).

Our modeling allows a multi-level analysis:
� Z allows to characterize the found clusters through social positions of the

individuals,
� parameter Π describes the relations between the found clusters,
� parameter γ describes the connections between the subgraphs,
� parameter α describes the cluster repartition in the subgraphs.
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RSM results: the latent clusters
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Figure : Characterization of the K = 6 clusters found by RSM.
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RSM results: the latent clusters

The latent clusters from the historical point of view:

� clusters 1 and 3 correspond to local, provincial of diocesan councils,
mostly interested in local issues (ex: council of Arles, 554),

� clusters 2 and 6 correspond to councils dedicated to political questions,
usually convened by a king (ex: Orleans, 511),

� clusters 4 and 5 correspond to aristocratic assemblies, where queens and
duke and earls are present (ex: Orleans, 529).
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RSM results: the relationships between clusters
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Figure : Characterization of the relationships between clusters (parameter Π).
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RSM results: the relationships between clusters
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Figure : Characterization of the relationships between clusters (parameter Π).
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RSM results: the relationships between clusters

The clusters relationships from the historical point of view:

� positive relations between clusters 3, 5 and 6 mainly corresponds to
personal friendships between bishops (source effect),

� negative and variable relations betweens clusters 4, 5 and 6 report the
conflicts in the hierarchy of the power,

� neutral relations between clusters 1, 3 and 6 were expected because they
deal with different issues (local / political).
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RSM results: the relationships between regions
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Figure : Characterization of the relationships between the regions (parameter γ in
log scale).
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RSM results: comparison of the regions
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Figure : Characterization of regions through cluster repartition (parameter α).
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RSM results: comparison of the regions

−1 0 1 2 3

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5

Comp.1

C
om

p.
2

Neustria

Provence

Unknown

Aquitaine

Austrasia

Burgundy
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Conclusion

Our contribution:
� a model for network clustering which takes into account an existing

partition of the network into subgraphs,
� this modeling allows afterward a comparison of the subgraphs,
� inference is done in a Bayesian framework using a VBEM algorithm,
� our approach has been applied to a complex historical network.

Software:

package Rambo for the R software is available on the CRAN

Preprint:

http://arxiv.org/abs/1212.5497
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Further work

Interesting problems to address:
� discrete edges which are frequent in many applications,
� temporality of the network (evolution of relations, offices or social

positions),
� visualization of this kind of networks,
� procedures to test the similarity of subgraphs ...

One Ph.D. position is available on this topic!
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