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Abstract—Communities are a powerful tool to describe the
structure of complex networks. Algorithms aiming at maximizing
a quality function called modularity have been shown to effec-
tively compute the community structure. However, some problems
remain: in particular, it is possible to find high modularity par-
titions in graph without any community structure, in particular
random graphs. In this paper, we study the notion of consensual
communities and show that they do not exist in random graphs.
For that, we exhibit a phase transition based on the strength of
consensus: below a given threshold, all the nodes belongs to the
same consensual community; above this threshold, each node is
in its own consensual community.

I. INTRODUCTION

Complex networks appear in various contexts such as
computer science (e.g. networks of Web pages), sociology
(e.g. collaborative networks), biology (e.g. gene regulatory
networks). These networks can generally be represented by
graphs, where nodes represent entities and edges indicate
interactions between them. For example, a social network can
be represented by a graph whose nodes are individuals and
edges represent a kind of social relationship.

An important feature of such networks is that they are
generally composed of highly interconnected sub-networks
called communities [1], [2]. Communities can be considered
as groups of nodes which share common properties and/or
play similar roles within the graph. The automatic detection
of such communities has attracted much attention in recent
years and many community detection algorithms have been
proposed (see [3] for a survey). Most of these algorithms are
based on the maximization of a quality function known as
modularity [4], which measures the internal density of com-
munities. Modularity maximization is an NP-hard problem [5]
and most algorithms use heuristics.

In random graphs, however, links appear independently of
each other, so a strong inhomogeneity in the density of links
on these graphs is not expected. Therefore, random graphs
should not have communities using the previous definition. As
shown in [6], it is however possible to find partitions with
significantly high modularity in random networks. A good
community detection algorithm should therefore be able to find
communities but also to indicate their absence.

Here, we assume that, if multiple runs of a non-
deterministic community detection algorithm agree that a given
set of nodes belong to a community, then this set is certainly

more significant than a community found by a single run. In
the following, we will show that this definition of consensual
community1 (denoted throughout the paper by cc and ccs for
the plural term) allows to make the distinction between real
graphs and random graphs in terms of community structure.
More precisely, we will prove that random graphs only contain
trivial ccs, i.e. containing all the nodes of the graph or only
a single node. We will also show there is a phase transition
between these two states depending on a resolution parameter.
The notion of consensual clustering has been introduced in [7]
and its application to networks in [8], [9], [10].

We provide a general description of algorithms used for
detecting ccs in Sect. II. We then present experimental results
on artificial and real networks in Sect. III and the proof of
the absence of ccs in random graphs in Sect. IV. We finally
conclude in Sect. V.

II. CONSENSUAL COMMUNITIES

Following the works from E. Diday [7] on consensual
clustering of vectors, different studies have proposed to adapt
this method to graphs and to combine different partitions into
ccs. The common features of these methods consist in (i)
compute different partitions and (ii) combine these partitions
to find similarities.

Two main approaches are used to obtain different partitions.
The first one consists in disturbing a given network by rewiring
a small fraction of links [11] or changing slightly the weights
on links [12], [13]. The second one, that we are going to use
hereafter, consists in using non-deterministic algorithms to ob-
tain different partitions. For instance, the Louvain method [14]
(among others) can give different results depending on the
order in which nodes are considered by the algorithm. This has
been used in [8], [10] to compute ccs and in [9] to compute
overlapping ones.

A. Definitions and Experiments

Given a graph G = (V,E) with n = |V | nodes, we apply
N times a non-deterministic community detection algorithm
A to G. At the end of each execution, each pair of nodes
(i, j) ⊆ V × V is classified either in the same community or
in different communities. We keep track of this in a matrix
of size n × n, which we denote by PNij = [pij ]

N
n×n, where

1Consensual commmunities are also referred as cores.



pij represent the fraction of the N executions in which i and
j were classified in the same community. Note that P is a
symmetric matrix (pij = pji), and we set pii = 0. From PNij ,
we create a complete weighted graph G′ = (V, V × V,W ),
where the weight of the link (i, j) is pij . Finally, given a
threshold α ∈ [0, 1], we remove all links having pij < α
from G′ to obtain the virtual graph with threshold, G′′α. The
connected components in the virtual graph G′′α obtained with
a given α are called α-ccs.

We will suppose hereafter that N is large enough, so
that PN = P∞. Previous works have indeed shown a fast
convergence of the PN matrix when N grows [8], [9]. We
will therefore concentrate on the α parameter, which has a
strong influence on the number and size of ccs.

The non-deterministic algorithm A we use here is the
Louvain algorithm [14], which is a local search method which
aims at maximizing the modularity [4] function. The Louvain
method is currently the fastest algorithm to find communities
on complex networks (it takes less than five seconds on
networks with more than one million of nodes and edges).
It is therefore well-suited to be run many times (typically with
N = 100 or more).

B. Properties of Consensual Communities

We computed ccs of complex networks of different sizes
from different domains: a collaboration network [15], an email
network [16] and a snapshot of the Internet (created by M.
Newman, unpublished). As Fig. 1(a) shows, a large threshold,
e.g. α = 1, leads to tiny ccs, most of which consisting of only
a single node. On the contrary, a low threshold gives a single
cc (if the original graph is connected), and with α < 0.5, we
generally have a giant cc containing the majority of nodes.
When the threshold increases, this giant cc will split into
smaller ones. But in the Internet or email network, even with an
α equal to 1, we still have a large cc containing approximately
10% of the node (see Fig. 1(b)).

This smooth decrease can also be understood through the
study of the distribution of the values inside the P∞ij matrix.
Figure 2 shows the pij distributions for three networks. We
observe that if most pairs are nearly always separated and that
a fair amount are always grouped together, there are also some
pairs of nodes which are sometimes together and sometimes
separated. This explains that significant ccs appear for a wide
range of values of α.

These results show that the notion of cc can be used to
detect different levels of communities. We will now show that
they can also be used to show the absence of a real community
structure in random graphs.

III. CONSENSUAL COMMUNITIES IN RANDOM GRAPHS

In random graphs, all pairs of nodes have the same prob-
ability to be connected. Hence, they should not have prefer-
ential binding inducing specific and identifiable nodes groups.
Therefore, we could conclude that there are no community
structure in random graphs. However, several studies show that
it is possible to find partitions with high modularity in random
graphs [6], [17]. Indeed, the links concentration fluctuates in
generated graphs, which means that subsets of nodes with a
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Fig. 1. (a) Average and (b) maximal size of ccs vs threshold α.
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Fig. 2. pij complementary cumulative distribution for three real-world
networks.

density larger than global density can appear. The phenomenon
is even more pronounced in regular or quasi-regular graphs,
like trees, torus or grid graphs, in which community detection
algorithms can also find partitions with good modularity [18].

A good algorithm for community detection should indicate
that communities obtained in random graphs are not real
communities. We will now show that random graphs do not
exhibit any non-trivial ccs. For this, we will use two different
random graphs models: the classical Erdős-Rényi model [19]
which is used to mimic the number of nodes and links only,
and the configuration model [20], which also respects the full
degree distribution.

A. Values of pij in Random Graphs

First of all, Fig. 3(a) and 3(b) show the distribution of pij
values for an Erdős-Rényi random graph with different values



of the number of nodes and the average degree. We observe a
high concentration of pij at an average value (around 0.1 for
large graphs using realistic values of the average degree) which
is very different from the distributions observed on real graphs
where the maximum of the distribution is at the zero value (see
Fig. 2). We further observe on Fig. 3(b) that large values of
pij appear. However, the concentration of values increases both
with the size of the network and with the average degree and
these large values are therefore less and less frequent.
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Fig. 3. Distribution of the pij averaged over 100 random Erdős-Rényi graphs.
(a) Networks with different number of nodes n and an average degree of
λ = 20. (b) Networks with n = 1,000 nodes and different values of the
average degree.

This concentration of values implies that even if partitions
with a good modularity can be found in random graphs, these
partitions are very different from one another since most pairs
are classified in the same community only once every ten runs.

B. Comparison with Real Graphs

To compare more precisely real and random networks, we
generated random graphs from the Erdős-Rényi model (resp.
configuration model) that have the same size and the same
average degree (resp. the same degree distribution) as two real-
world networks. In Fig. 4, the Erdős-Rényi model shows no
pair of nodes with pij = 0, which means that all pairs of
nodes have been grouped together at least once during 1,000
runs of the Louvain algorithm, regardless of their position in
the network. The same is observed for the configuration model.

Conversely, there is nearly no pair of nodes which are
always grouped together, except for the leaves (nodes of degree
1) of the network which are always grouped with their only
neighbor. This presence of nodes of degree 1 is very common

with the configuration model when the degree distribution is a
power-law. The same is observed for the Erdős-Rényi model
since the real average degree is small and nodes of degree 1 are
not so uncommon. This explains the small increase observed
for the pij values around 1. Furthermore, as predicted by the
experiments on Erdős-Rényi random networks (see Figs 3(a)
and 3(b)), the maximum of the values is around 0.1.
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Fig. 4. pij distribution for two real-world networks together with Erdős-
Rényi and configuration model random graphs with the same size: the email
network (top) and the collaboration network (bottom).

There is two direct consequences of this distribution: (i) for
very low values of the threshold, there is a single cc containing
all nodes since there is no value close to zero and therefore
the virtual graph contains all links, and (ii) for large values
of the threshold, the virtual graph contains almost no links
and therefore high threshold ccs are reduced to single nodes.
Interestingly, in random networks, there is a sharp transition
(see Fig. 5), at a threshold value around 0.3, which is not
present in real-world networks. This phase transition cannot
be directly deduced from the previous remarks and we will
now use more arguments to prove its existence.
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Fig. 5. Average size of ccs for a real networks and two random networks
generated with the Erdős-Rényi and the configuration models.



IV. EXISTENCE OF A PHASE TRANSITION

We recall that for a given threshold α, α-ccs are defined
as connected components of the weighted graph G′′α whose
adjacency matrix is P∞, in which we have deleted weighted
links with a value less than α. In random graphs, we observe
that a small α gives one cc containing all the nodes of the
graph. Then, after a rapid phase transition (based on the choice
of α), we obtain only trivial ccs.

In the sequel, we give arguments to show the existence of
this phase transition. Throughout the proof, we use extensively
the fact that graphs are random and thus all connections appear
independently. These assumptions can be related to classical
mean field assumptions in statistical physics.

A. Values of pij for two connected nodes are highly concen-
trated around a mean value

Since we are considering random graphs, we can suppose
that nodes (and their neighbors) in the input graph are similar.
Thus, regardless of the results of the community detection
algorithm used, nodes will be in expectation in the same
community than a proportion p of their neighbors. Moreover,
the random aspect of the graph implies this proportion p
concerns neighbors which have been chosen randomly and
independently for each run of the algorithm. In an equivalent
way, we obtain that all pij are approximately equal to p.

Of course, this argument holds only if we assume that
all elements in the graph are random. Indeed, the existence
of correlations or specific properties on nodes can harm it.
This is for instance the case of modularity applied on graphs
having very low average degree. In particular, a node of degree
1 is always placed in the community of its unique neighbor
and the above mentioned argument cannot be applied. The
complete absence of correlations is therefore only valid for
large networks with a sufficiently large average degree.

Figure 6 (all pairs) is an experimentation on a 10,000 nodes
random Erdős-Rényi graph with different average degrees. We
can observe that when the average degree is increasing, the
effects of low degree nodes disappear and the distribution of
pij is much more concentrated.

B. Values of pij for two connected nodes are higher than those
of two non-connected nodes

On Fig. 6 (bottom), we can see that the distribution is
composed of two distinct modes which correspond respectively
to connected pairs of nodes, i.e., links, and non-connected pairs
of nodes. pij values for connected nodes are higher than for
non-connected nodes.

Two nodes i and j not connected and having a nonzero
pij were necessarily classified at least once in the same com-
munity. As communities are necessarily connected subgraphs
of the input graph, there exists a path connecting them and
having only nonzero puv , for each nodes u and v belonging to
the path. For instance, i and j can have a common neighbor
k such that pik and pjk are positive.

Let us assume that nodes i and j have a unique common
neighbor k. As the graph is purely random, we can suppose that
the probability that i and k are placed in the same community
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Fig. 6. pij distribution with a distinction between connected and non-
connected pairs of nodes for a random graph with different average degree
(5 and 100) and 10,000 nodes. The curve with all pairs is nearly completely
overlapped by the other two curves, expect for average degree 5.

is pik = p, and the one that k and j are in the same community
is pkj = p. We also suppose they are independent, because
edges linking i, j and k can be inside as well as between
different communities, without any correlation. Thus, to i and
j be classified in the same community, these two events must
occur simultaneously. Therefore, pij = pik × pkj = p2.
The independence assumption is clearly unfounded in real
networks, in particular due to the existence of strong local
correlation as measured by the clustering coefficient.

In the case where nodes i and j have no common neighbor
but are connected with a longer path in the input graph, by
using the same reasoning, we have pij =

∏
uv∈P puv = pk,

where P is a shortest path of size k linking i and j. This
calculation holds if i and j have only one common neighbor.

It is easy to compute pij in the case where the two nodes
have z nodes in common. We obtain pij = 1 − (1 − p2)z ,
that corresponds to 1 minus the probability that i and j are
not linked with a common neighbor. However, if we assume
that we have large graphs having low average degree, the
probability of having more than one common neighbor (if
we already have one) is very low. For these reasons, we can
assume that values of pij are higher for connected pairs than
non-connected pairs.

C. Existence of a Phase Transition

If we suppose that all connected pairs (i, j) have pij = p,
and that non-connected nodes u and v have a lower probability
of being connected, thus, for a threshold below p, only pairs
of connected nodes provide connectivity, and as all connected
pairs have nearly the same pij , we have only one cc containing
all the nodes of the input graph (for large enough values of



the average degree, the graph is connected, otherwise we have
as many ccs as the number of connected components).

Conversely, since the pij distribution for connected pairs
is strongly centered on the value p, any value of the threshold
above p will destroy the ccs very quickly.

D. The proportion of intra-community links is equal to p

Finally, we can compute the value of this threshold. Let us
assume that k% of links are intra-community links. Then, this
means that for each execution of the algorithm, one node u will
be put in expectation with k% of its neighbors, or equivalently
each neighbor will be with the given node u for k% of the
executions. This value k is thus the value of pij corresponding
to the p that we have used so far.

Computing exactly the value of p is an open problem
that seems to be difficult [6]. However, numerical studies (see
Fig. 7) show that it decreases with the graph density but that
the exact decrease pattern is quite complex.
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V. CONCLUSION

We have shown here that ccs allow to distinguish graphs
with a real community structure from graphs where this
structure arises from fluctuations. To do so, we have shown
that ccs in random graphs are trivial, containing either all the
nodes of the graph or one node each.

Some future works remain to further understand the ab-
sence of non-trivial ccs in random graphs. First, it is necessary
to compute the exact value of the threshold as a function of
the parameters (size and average degree) of the Erdős-Rényi
graphs. For graphs generated from the configuration model, the
task is more difficult since there are many degree one nodes for
which the modularity function requires that they are placed in
the community of their only neighbour. Such local correlations
are harder to take into account.

It would be interesting to analyze this phenomenon on
others random graphs families such as Watts-Strogatz model,
Barabási-Albert model, etc.

On a more general perspective, the computational issue
has to be addressed. Indeed, computing ccs on large graphs
can be hard even with very fast underlying algorithms such
as Louvain, and different techniques should be used, such as
local computations for instance.

Another perspective would be to make a similar study
on regular graphs, in which we know that it does not exist
community structures. In particular, for regular grids and torus,
previous studies have shown that a high modularity partition
can be found, but the regularity of such network naturally
allows many different partitions which are simply translations
of any partition. Intuitively, it means that many high quality
partitions can be found and that should not exist.
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