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Introduction

Hierarchical community structure

A partition of the vertices where each cluster can be recursively subdivided into a new
partition.

Example : Pays-de-la-Loire commuters network (1999) with the ZAUER classification
(INSEE).
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Introduction

State of the art (algorithms producing or using a hierarchical partition)

Agglomerative:
Hierarchical Clustering based on distances [Ward Jr, 1963]
Iterative call of a ”flat” clustering algorithm the compound graph induced by the
previous partition [Blondel et al., 2008]

Divisive:
Edge filtering [Girvan and Newman, 2002, Radicchi et al., 2004]
Iterative call of a ”flat” clustering algorithm on each previously detected
cluster [Auber et al., 2003]

Others:
Probabilistic models [Clauset et al., 2006]
Hierarchical Infomap [Rosvall and Bergstrom, 2011] (hybrid method)
Dendrogram filtering using a scale parameter [Pons and Latapy, 2011]
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Introduction

Search space size

For i = 1 . . . 10

#{Flat Partition} : (Bell number)
1, 2, 5, 15, 52, 203, 877, 4140, 21147

#{Dendrograms} : (Double factorial)
1, 1, 3, 15, 105, 945, 10395, 135135, 2027025, 34459425

#{Hierarchical Partitions} ≥ ([Flajolet and Sedgewick, 2009])
1, 1, 4, 26, 236, 2752, 39208, 660032, 12818912, 282137824

Problems:

Evaluate the quality of a hierarchical partition of a graph.

Exploring the space of hierarchical partitions
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Hierarchical Partition of a Graph Notations

Hierarchical Partition

Let G = (V ,E) be a graph, a hierarchical partition is a (partition) tree T where :

Each node t ∈ T corresponds to a subset Ct ⊂ V .

σt is the list of successors of t and we have Ct =
⋃

f∈σt
Cf .

F(T ) (the leaves) is the subset of nodes having σt = ∅.
Ni (T ) is the ith level of T i.e. the set of nodes at a distance at most i from the
root such as

⋃
t∈Ni (T ) Ct = V .

Tt (resp. Gt) is the subtree rooted in t (resp. the subgraph induced by Ct).

Remark : A flat partition C is a hierarchical partition with N1(C) = F(C).
Example (Commuters networks) : Classify the cities according to the administrative
region and then according to the ”departement”.
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Hierarchical Partition of a Graph Notations

Hierarchical Partition

Let G = (V ,E) be a graph, a hierarchical partition is a (partition) tree T .

σt1 = {t3, t4}
N1(T ) = {t1, t2}
F(T ) = N2(T ) = {t3, t4, t2}
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Hierarchical Partition of a Graph Quality measures

Quality measure

A quality measure is a function Φ(G , C)→ R.
If Φ(G ,A) > Φ(G ,B), A is said ”to be better” than B.

Examples:

Modularity Q [Newman, 2006]

Mancoridis index MQ [Mancoridis et al., 1998]

Performance [van Dongen, 2000]

Map Equation [Rosvall and Bergstrom, 2008]

Surprise [Aldecoa and Maŕın, 2011]
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Hierarchical Partition of a Graph Quality measures

Additive quality measure

An additive quality measure is a quality measure which can be written:

Φ(G , C) =
k∑
i

φ(G , C,Ci )

where φ(G , C,Ci ) is the gain of the cluster Ci .

Examples:

Modularity Q [Newman, 2006]

Mancoridis index MQ [Mancoridis et al., 1998]

Performance [van Dongen, 2000]

Map Equation [Rosvall and Bergstrom, 2008]

Surprise [Aldecoa and Maŕın, 2011]
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Hierarchical Partition of a Graph Quality measures

Strongly additive quality measure [Pons and Latapy, 2011]

A strongly additive quality measure is a quality measure which can be written:

Φ(G , C) =
k∑
i

φ(G ,Ci )

where φ(G ,Ci ) is the gain of the cluster Ci

(does not depend on the way (V \ Ci ) is partitioned).

Examples:

Modularity Q [Newman, 2006]

Mancoridis index MQ [Mancoridis et al., 1998] (weighted version)

Performance [van Dongen, 2000]

Map Equation [Rosvall and Bergstrom, 2008]

Surprise [Aldecoa and Maŕın, 2011]
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Hierarchical Partition of a Graph Generalization to multilevel

Hierarchical quality measure [Queyroi et al., 2011]

Let G = (V ,E) be a graph with a hierarchical partition T and φ be the gain function for
a cluster. The hierarchical quality measure is

Φ(G ,T , q) =
∑

i∈σr(T )

φ(G ,Ci ) (1 + q × Φ(Gi ,Ti , q))

with q ∈ [0, 1]. r(T ) is the root of T .

Remarks :

Φ(G ,T , q) is a one-variable polynomial.

The variable q can be used to favour deeper hierarchical clustering.

Without loss of generality, we will use as hierarchical quality criterion:

Φ(G ,T ) =

∫ 1

0

Φ(G ,T , q)dq
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Hierarchical Partition of a Graph Generalization to multilevel

Φ(G ,T , q) = φ(G ,Ct1 ) + φ(G ,Ct2 ) + q φ(G ,Ct1 ) (φ(Gt1 ,Ct3 ) + φ(Gt1 ,Ct4 ))

Φ(G ,T ) = φ(G ,Ct1 ) + φ(G ,Ct2 ) +
1

2
φ(G ,Ct1 ) (φ(Gt1 ,Ct3 ) + φ(Gt1 ,Ct4 ))
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Optimization of a Hierarchical Partition Optimization procedure

Objective: Find the best sub-hierarchical partition induced by a hierarchy

Equivalent to

Find the best subset of (non-horizontal) cuts

Find the best subset of nodes of T to remove

Number of solutions is O(2|T |) ⇒ Use a heuristic
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Optimization of a Hierarchical Partition Optimization procedure

The gain of node removal

Let t ∈ T , The gain of the removal of t is the difference between the quality of T and
the quality of T \ {t}.

∆tΦ(G ,T ) = Φ(G ,T \ {t})− Φ(G ,T )

The removal of a internal node t has several effects:

The nodes of Tt are now ”higher” in the hierarchy.

σt is no longer a partition of Gt but is part of a partition of Ga(t) (where a(t) is the
direct ancestor of t).
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Optimization of a Hierarchical Partition Optimization procedure

The gain of node removal

Let t ∈ T , The gain of the removal of t is the difference between the quality of T and
the quality of T \ {t}.

∆tΦ(G ,T ) = Φ(G ,T \ {t})− Φ(G ,T )

Algorithm 1: Greedy Optimisation of T .

Input: G = (V ,E) a graph, T a hierarchical clustering of G
Output: T ′ a hierarchical clustering of G
T ′ = T ;
tmax = arg maxt∈T ′ ∆tΦ(G ,T ′);
while ∆tmax Φ(G ,T ) > 0 do

T ′ = T ′ \ {tmax};
tmax = arg maxt∈T ′ ∆tΦ(G ,T ′);

end
return T ′;
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Optimization of a Hierarchical Partition Procedure analysis

Time complexity
The time complexity of the procedure is O(h2|E |+ |T |3) where |T | is the number of
nodes in T and h the height of T .

The number of internal/external edges are computed in O(h2|E |).

Computation of φ(G ,Ct) in constant time.

Computation of Φ(G ,T ) (and ∆tΦ(G ,T )) is done using a tree traversal.
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Application – Modularity Maximisation The Louvain algorithm

Modularity [Newman, 2006]

Let G = (V ,E) be a graph with a flat clustering C

Q(G , C) =
k∑
i

ei
|E | −

(
di

2|E |

)2

where

ei : number of internal edges for cluster Ci

di : sum of the degrees of vertices in Ci

[Blondel et al., 2008] introduced a heuristic (Louvain algorithm) for maximizing the
modularity.
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Application – Modularity Maximisation The Louvain algorithm

Remarks

The iterative call leads to the construction of a hierarchy

The output of the algorithm is the first level N1(T )

The produced hierarchical clustering can be of interest for some applications

Some internal clusters may be irrelevant (the heuristic used may not be able to
group a lot of vertices in one step)

Modularity gain

We use ∀t ∈ T

φ(G ,Ct) =
et
ea(t)

−

(∑
u∈Ct

degGa(t)
(u)

2ea(t)

)2
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Application – Modularity Maximisation Results on LFR benchmark

Hierarchical LFR Benchmark
[Lancichinetti and Radicchi, 2008]

is a “realistic” random graphs model with a two level community structure.
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Application – Modularity Maximisation Results on LFR benchmark

Hierarchical LFR Benchmark
[Lancichinetti and Radicchi, 2008]

is a realistic random graphs model with a two level community structure.

Parameters (relevant here) :

µ = µ1 + µ2 : average proportion of edges from a micro-community...

µ1 : ... to another macro-community.

µ2 : ... to the same macro-community.

We want :

µ1, µ2 ' 0 : Only detect micro-communities.

µ1 < 0.5, µ2 ≥ 0.5 : Only detect macro-communities.

µ1 < µ2 < 0.5 : Detect both micro and macro communities.
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Application – Modularity Maximisation Results on LFR benchmark

We compare our results to predictions using the Variation of Information distance:

First produced level (N1(T )) vs macro-communities

Second produced level (N2(T )) vs micro-communities

Last produced level (F(T )) vs micro-communities
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Application – Modularity Maximisation Results on Commuters Flows

Pays-de-la-Loire commuters network (INSEE – 1999).
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Conclusion and future directions
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Conclusion and future directions

Conclusion: I introduced

a hierarchical quality measure that naturally extend additives measures

a procedure to improve hierarchical partitions

Limitations: The procedure

is a greedy algorithm

needs to be apply on different hierarchies (Tulip plugin available soon!)

Future directions:

Find useful properties of Φ(G ,T )

Define a distance metric between hierarchical partitions
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Thanks for your attention.
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