Scalable Analysis for Network Monitoring and Forensics Purposes

Jérôme François

○ 2 / 62 ∧

- 1 Introduction Some facts Motivation
- 2 Traffic analysis Anomaly detection Botnet detection
- 3 Topology analysis Bad behaviors in Internet Detection Evaluation
- 4 Conclusion

 $3/62^{-1}$

Introduction Some facts Motivation

- 2 Traffic analysis Anomaly detection Botnet detection
- 3 Topology analysis Bad behaviors in Internet Detection Evaluation
- 4 Conclusion

 \circ 4 / 62 ^

1 Introduction Some facts Motivation

- 2 Traffic analysis Anomaly detection Botnet detection
- 3 Topology analysis Bad behaviors in Internet Detection Evaluation
- 4 Conclusion

- 2,2 billions users, 200 millions servers
 - Cisco measured and forecasted Internet traffic (1000 PB/day)

5 / 62 ^

DDoS Attacks

6 / 62 ^

Source: Arbor Networks, Inc.

Web based attacks

Source: Symantec Corporation

7 / 62 ^

0

Introduction		Traffic analysis	Topology analysis		Conclusion	
Some facts	Motivation					
SIIT		Some	facts	about	botnets	

- Botnet monitoring (Measurement, Detection, Disinfection and Defence, ENISA report 2011):
 - Shadowserver Foundation: 5000-6000 alive botnets (100000-250000 bots) simultaneously in 2005
 - Conficker working group: 1 000 000 3 000 000 alive zombies (2009)
 - Securelist.com: 3 600 000 zombies within US only (2009)

8 / 62

○ 9 / 62 ∧

Introduction

Some facts Motivation

- 2 Traffic analysis Anomaly detection Botnet detection
- 3 Topology analysis Bad behaviors in Internet Detection Evaluation
- 4 Conclusion

Introductio	on	Traffic analysis	Topology a	nalysis	Conclusion
Some facts	Motivation				
SNT		Why	attacks	are	powerful?

- Motivation
 - challenging aspects / attacker competitiveness... past trend, too risky today
 - win money!
 - abuse (spam, click fraud)
 - attack the competitors (steal information, disrupt services)
 - ▶ 15\$ = 10 000 bots (source: Symantec)
 - Zeus botnet: 70\$ million stolen from victim bank accounts

○10 / 62

- \rightarrow costs: 388 billions \$ (source: Symantec 2010)
- And also:
 - more complex attack mechanisms
 - more available bandwidth
 - more users
 - more devices (Internet everywhere)
 - more on-line services

Context

- ► Growth of Internet / network sizes, heterogeneity, mobility
- Continuous arising new threats, high sophistication
- Cyber criminality = new motivations
- Network security:
 - 1. prevention / proaction
 - 2. detection
 - 3. reaction
- \blacktriangleright Network security \rightarrow observations \rightarrow network monitoring

- Multiple infection vectors: direct attack, email, pdf, instant messaging, social networks
- ▶ Distributed attacks (botnet → DDoS, spam,...)
 - Multi-hops attacks
 - Enhancement of malware robustness: fastflux, double-flux

12 / 62

Challenges:

- ▶ local view inefficient against distributed attacks → collect global and multiple information (network traffic, DNS domains, used applications, etc)
 - detect attacks at the operator levels
 - collect global data about the network from individual location

○13 / 62 ∧

- scalability: storage and analyze large volume of data (60,000 flows/second, millions of hosts, etc)
 - aggregate information
 - combine individual information = collaborative security
 - distributed computing
- privacy:
 - sensitive infomation to analyze (user tracking)
 - multiple sources / information sharing

<u>○14 / 62 ∧</u>

Introduction Some facts Motivation

- 2 Traffic analysis Anomaly detection Botnet detection
 - 3 Topology analysis Bad behaviors in Internet Detection Evaluation
- 4 Conclusion

Introduction	Traffic analysis	Topology analysis	Conclusion
Anomaly detection	Botnet detection		o o o v
SNT		<u>^</u>	Outline

○15 / 62

Introduction Some facts Motivation

2 Traffic analysis Anomaly detection Botnet detection

3 Topology analysis Bad behaviors in Internet Detection Evaluation

4 Conclusion

- Condensed information about a traffic "instance" timestamp, Ip src, Ip dst, protocol, #bytes, #pkts, etc
- Advantages:
 - Widely available at ISP level
 - No payload $\rightarrow \sim$ privacy preserving
- Challenges:
 - Few information
 - Huge volume of data (100 000 flows/second)

► → combine multiple flow records to highlight malicious activities

Aggregation

- Scalable way to represent information
 - Outline relevant correlated facts
 - reduce storage needs and post processing time
- Temporal and Spatial aggregation
 - temporal: time windows split (β)
 - ► spatial: keep nodes with activity > α e.g. traffic volume, aggregate the others into their parents → needs hierarchical relationships

<u>○17 / 62 ∧</u>

- Heterogeneous Data
 - No specific order
 - 1st Source IP@, 2nd Destination IP@
 - Auto adjust to Information Granularity
 - /18 /24 /27 subnetworks...

Introdu	ction	Traffic analysis	Topology analysis	Conclusion
Anomaly	detection	Botnet detection		
SNT	Muti	dimensional	Aggregation	Example

PORT	PROTO	KB	TIME	SOURCE	DEST
80	TCP	1491	$2010\!-\!02\!-\!24 02\!:\!20\!:\!15$	192 . 168 . 6 . 2	92.250.221.82
110	TCP	988	$2010\!-\!02\!-\!24 02\!:\!20\!:\!19$	192 . 168 . 8 . 2	92.250.223.87
443	TCP	902	$2010\!-\!02\!-\!24 02\!:\!20\!:\!27$	192 . 168 . 11 . 2	92.250.220.82
110	TCP	1513	$2010\!-\!02\!-\!24 02\!:\!20\!:\!29$	192 . 168 . 112 . 1	92.250.222.81
80	TCP	1205	$2010\!-\!02\!-\!24 02\!:\!20\!:\!29$	192.168.11.1	92 . 250 . 220 . 82
80	TCP	1491	$2010\!-\!02\!-\!24 02\!:\!20\!:\!31$	192 . 168 . 1 . 2	92.250.220.83
110	TCP	1467	$2010\!-\!02\!-\!24 02\!:\!20\!:\!39$	192 . 168 . 12 . 2	92.250.221.81
80	TCP	927	$2010\!-\!02\!-\!24 02\!:\!20\!:\!39$	192 . 168 . 12 . 2	92.250.220.82
443	TCP	1294	$2010\!-\!02\!-\!24 02\!:\!20\!:\!39$	192.168.11.1	92.250.223.82
110	TCP	940	$2010\!-\!02\!-\!24 02\!:\!20\!:\!49$	192 . 168 . 21 . 2	92.250.221.81
80	TCP	917	$2010\!-\!02\!-\!24 02\!:\!20\!:\!49$	192 . 168 . 23 . 1	92 . 250 . 220 . 82
443	TCP	460	$2010\!-\!02\!-\!24 02\!:\!20\!:\!59$	192 . 168 . 26 . 2	92 . 250 . 220 . 85

0

0/1

0 0 0 0 0 0 18 / 62 0

○19 / 62 ∧

○19 / 62 ∧

Tree based structure: Root node and multiple children *Directions*

- How to find the right path to insert a node within a tree?
- Direction function
 - Most specific ancestor common ancestor between two nodes

20 / 62

- Longest common prefix match
- ▶ IPv4: binary function (0,1) as next bit value
- ► DNS: every level name is a direction
- ports: service taxonomy

Aggregation

- From leafs to root node
- On a complete tree of a time window
- $\blacktriangleright \rightarrow$ Large data structures in memory before aggregation

Online Strategies (before the end of the time window)

• Tree size > MAX_NODES \rightarrow aggregation

	Root	LRU
	Aggregation is triggered from root node	Aggregation is triggered in the least recently used node
RAM	+	+
Performance		-

○21 / 62 ∧

0

022 / 62 ^

Real ISP data + attack injection

Flow deleter				
Netflow records Attack model	Netflow records			
# Flows	3 907 859			
# IP Addresses	source addresses : 250 314			
	destination addresses: 235 120			
# bytes	24.1 GB			
Avg. bytes/Flow	6 829			
# Packets	38 132 130			
Avg. Packets/Flow	9.76			
# UDP Flows	2 756 321			
# TCP Flows	1 097 030			
# ICMP Flows	50 914			
# Other Protocol Flows	3 594			

Introduction	Traffic analysis	Topology analysis	Conclusion
Anomaly detection	Botnet detection		
SNT			Results

- Source and destination IP address + distance \rightarrow decision tree
- ► average tree size = 3288, 90 (after aggr.)

Type of Attack	Results	
	TPR	FPR
Nachi scan	0.912	0.222
Netbios scan	0.941	0.185
Popup Spam	0.882	0.361
$SSh \ scan + TCP \ flood$	0.882	0.028
DDoS UDP flood	0.923	0.077
DDoS TCP flood	0.887	0.027
DDoS UDP flood + traffic deletion	0.932	0.072

► False positive reduction → compare Netflow without aggregation (Networking'11)

<u>23 / 62</u>

► Aggregation → better to detect large scale attacks

- Anomaly detection in ISP network
 - privacy preserving \rightarrow Netflow data
 - Iow complexity:
 - LRU algorithm (Least Recently Used) \rightarrow maximal size fixed to 128

○24 / 62 ∧

- usually lower in practice
- Dynamic granularity over the IP address space
 - granularity is guided by the events to monitor...
 - ...not by the size of space to monitor
- tool: https://github.com/jfrancois/mam
- Publications: Networking'11, LISA'12

Introduction	Traffic analysis	Topology anal	ysis Conclusion
Anomaly detection	Botnet detection		0,0,0,0,N
SNT		1°10	Outline

Introduction Some facts Motivation

2 Traffic analysis Anomaly detection Botnet detection

- Topology analysis Bad behaviors in Internet Detection Evaluation
- 4 Conclusion

- Botnet architecture: Command & Control (C&C) to propagate orders
 - centralized approach (IRC, HTTP)
 - structured P2P botnet: high performance
- Detection (state of the art)
 - detect large volumes of related attacks
 - centralized botnets: detect central component
 - P2P botnets: active participation
- Objective: passive detection of P2P botnets which do not generate high volume of traffic (data stealing / espionage, stealthy infection)

- Discover the C&C channel at the ISP level:
 - NetFlow monitoring → who talks to whom ? (dependency graph)
 - ► linkage analysis + clustering techniques → identify groups of hosts sharing similar behaviors

○27 / 62 ∧

- MapReduce implementation
- experiments using real NetFlow data

- Who talks to whom ?
 - bots have a distinguishable communication patterns
 - bots are well interconnected together
- Trivial example: bots = 1, 2, 3, 4
- automatic analysis:
 - local view: node adjacency, benign hosts well interconnected (server)
 - ► global view: a bot may be connected to few others which are connected to few others and so one + loops → they are globally well interconnected together

- Global link analysis
 - Google web page ranking algorithm
 - a page/host is highly scored if it is well pointed by others especially if these latter have high scores
- Iterative computation
 - equal score at the begin
 - stop when stable
 - score propagation
 - weighted nodes (bot knowledge)

$$P_t(i) = (1-d) \sum_{k=1}^n W(k) + d \sum_{(j,i) \in E} \frac{P_{t-1}(j)}{O_j}$$

○29 / 6<u>2</u> ∧

▶ Both communication directions are important → invert arrows → two values per node: hub, authority

- Inefficiency of pure link analysis
 - benign hosts may be highly scored (popular services)
 - bots \rightarrow similar communication patterns
 - botnet might be partitioned (randomness of connection, disruption)
 - simple thresholds not well fitted

Clustering

- find similarly scored hosts
- unsupervised algorithm
 - + few parameters
- ► → DBSCAN: density based

○30 / <u>6</u>2

- ► A cluster can be composed of benign hosts → necessary prior knowledge about the botnet:
 - one bot per cluster \rightarrow all the hosts of the clusters are bots
 - additional tool: honeypot, blacklists, IDS, etc.

<u>○31 / 62</u> ∧

- Map-Reduce:
 - data-intensive processing
 - shift the the network transfer from the data to the code
 - approach based on (key, value) pairs:
 - ► map input: (k1, v1) (k1: line number, filename... but rarely used for further usage)

Signature Si

- ► intermediate between mappers and reducers: (k2, v2)
- reduce output: $\langle k3, v3 \rangle$
- partitioner: $k2 \rightarrow Reducers$

Node = ID [key] + (score + adjacent nodes) [value]

○33 / 62 ∧

- ▶ Netflow ISP Data containing labeled botnet C&C traffic \rightarrow impossible
- Compromise:
 - real data (considered as to being free of botnets)
 - synthetic botnet traffic injected
- P2P botnet traffic \rightarrow define host relationships:
 - ▶ id space: N = 2¹⁶⁰
 - Chord (DHT) \rightarrow theoretical but generic: routing in log(N)
 - ► Kademlia (XOR metric): routing in O(log(N)) but with a high redundancy → high robustness

<u>○34 / 62 ∧</u>

 Koorde (sub-partitioning): routing in O(log(N)/log(log(N)) with a low redundancy → less robustness

- ► Stealthy botnets: 1% of IP addresses
- ▶ Bot IP addresses randomly and uniformly selected

	chord	Kademlia	Koorde
Flow#	2133887	2399032	1997049
Host#	323610	323610	323610
Bytes#	13.7G	13.7G	13.7G
Duration	18min23sec	18min23sec	18min23sec

Since 35 / 62 ∧

- Without clustering:
 - threshold based method
 - threshold varies to compute both true positive and false positive rates

- ▶ High redundancy → easy detection (Kademlia)
- Hub values are more discriminative
- FPR = 2% = 6400 FPs → still needed to improve the accuracy

Sign 36 / 62 ∧

- Clustering \rightarrow better accuracy
 - ► Kademlia: TPR = 99%, FPR = 0.2%
 - ► Koorde: less redundancy → more noise points with DBSCAN → clustering is better before a certain threshold
- Bot knowledge: significant impact only with Chord

- Clustering \rightarrow better accuracy
 - Kademlia: TPR = 99%, FPR = 0.2%
 - ► Koorde: less redundancy → more noise points with DBSCAN → clustering is better before a certain threshold

○37 / 62

Bot knowledge: significant impact only with Chord

- Unrealistic extrema cases for detecting all botnets
 - one single cluster → huge number of false positives (ROC curves)
 - \blacktriangleright one cluster per bot \rightarrow all the botnet monitored by the honeypot

- High TPR without one bot per cluster
- Best tradeoff obtaining with few clusters: worst case (Chord): TPR = 0.96, FPR = 0.04, 21 clusters

○38 / 62

- Knowledge: 20 bots
- Importance of each cluster ?
 - cluster with few bots
 - ► only needed to monitor huge clusters → limits the knowledge requirements

 Kademlia + discard smallest clusters

- low impact on true positives: 92% with only 2 clusters
- significant reduction of false positives

○39 / <u>6</u>2

Efficiency analysis

- ► score forwarded through the links → number of nodes has no impact + number of intermediate (key,value) pairs depends on the number of links
- \blacktriangleright test different size of dataset \rightarrow subset between 100k and 300M links

○40 / 62 ∧

different Hadoop cluster configurations (number of machines)

linear increase (execution time divided by 7 for a huge dataset)

○41 / 62 ∧

- #links \times 10 \rightarrow execution time \times 6 (8 slaves)
- Few links → no improvement due to overhead of Map-Reduce (data split, reduce phase)
- < 1M #links \rightarrow Hadoop useless
- $ightarrow > 10M \ \#links
 ightarrow 4$ slaves are useful

- Detection of botnets:
 - structured P2P networks
 - ISP level / IP flow monitoring (passive approach)
 - 2 levels approach: link analysis + clustering
 - Some prior knowledge (additional source of information like honeypot)

○42 / <u>62</u>

- Scalability: 18min of monitoring handled in 160 seconds
- publications: Networking 11, WIFS'11
- ► Future work: how to alleviate the need of a honeypot / relying only on traffic observation → service dependency

○43 / 62 ∧

- Introduction
 Some facts
 Motivation
- 2 Traffic analysis Anomaly detection Botnet detection
- 3 Topology analysis Bad behaviors in Internet Detection Evaluation
- 4 Conclusion

<u>○44 / 62 ∧</u>

Introduction Some facts

- Motivation
- 2 Traffic analysis Anomaly detection Botnet detection
- 3 Topology analysis Bad behaviors in Internet Detection Evaluation
- 4 Conclusion

- Autonomous Systems
 - BGP routing → routing table = AS paths (sequence of AS to reach an IP subnet)

≤45 / <u>62</u>

- Malware providers needs also hosting (malware, C&C servers, phishing website...)
 - detection: monitoring, complains, reports,...
 - Operators can disconnect/blacklist malware hosters
- \blacktriangleright \rightarrow some AS are not blocking their malicious users
 - some AS are more *tolerant* for hosting services (money-driven, political-driven...)
 - malicious entities are their own operators

- How to detect AS hosting malware → BGP ranking (http://bgpranking.circl.lu/)
 - $\blacktriangleright \sim ASs$ administrated by cyber-criminal organization = malicious AS
 - blacklists of IP addresses involved in malicious activities
 - ▶ map IP addresses to ASs → compute a score for each AS = detection

○46 / 62 ∧

• \rightarrow neighbor ASs can react (de-peering, complains)

$$AS_{rank}(ASx) = 1 + rac{\sum_{b \in BL} occ(b, ASx) b_{impact}}{ASx_{size}}$$

- Avoid detection → hide malicious AS behind ASs looking normal (malware transit AS)
- Complex cyber-criminal organization networks ~ long manual investigation
 - ► Russian Business Network: 3 years before being disrupted

○47 / 62 ∧

- Detection of malware transit AS not filtering their bad neighbors
 - Accurate AS graph based analysis
 - Global
 - investigation not focused on a single AS
 - not only at the first hop
 - Efficiency = real-time (route stability $\sim 1 \text{ day}$)

○48 / 62 /

○49 / 62 ∧

1 Introduction Some facts

Motivation

- 2 Traffic analysis Anomaly detection Botnet detection
- 3 Topology analysis Bad behaviors in Internet Detection Evaluation

4 Conclusion

- BGP routes = who provides transit to whom
- Theoretical measure
 - extract pair of ASs which are connected through the evaluated AS
 - evaluate the potential impact of an AS to an another one

$$MT(ASx) = \sum_{\substack{(ASy,ASz)\\ \in \{(a,b)|a \xrightarrow{ASx}b\}}} \frac{(AS_{rank}(ASy) - AS_{rank}(ASz))^+}{card(\{ASu \in V, ASy \xrightarrow{ASu} ASz\})}$$

- Issues
 - voluminous number of routes \rightarrow high complexity
 - ► instability of routes → needs to collect data over long time period to avoid a bias

○50 / 62 ∧

ightarrow
ightarrow compress routes into an AS graph

- ► AS graph → lost of exact transit information
- Approximation: a malicious AS A can provide malware to AS B through AS C if all paths from A to B goes by C
- $\blacktriangleright \rightarrow \text{limit analysis to } k \text{ hops around} \\ AS B$
- Normalization regarding the number of neighbors
- Issue: single AS analysis

 $MT'_{k}(ASx) = \frac{\sum_{(c1,c2)\in pairs(C_{k})} \left| \sum_{a \in c1} Rank_{a} - \sum_{b \in c2} Rank_{b} \right|}{\#neighs(ASx)}$

○51 / 62

- Global link analysis
 - Google: a page/host is highly scored if it is well pointed by others especially if these latter have high scores
 - unweighted vs. weighted (BGP ranking)

$$P_t(i) = (1-d) \sum_{k=1}^n W(k) + d \sum_{(j,i) \in E} \frac{P_{t-1}(j)}{O_j}$$

► Normalization → average score of ASs having the same number of neighbors

 $P'_t(i) = P_t(i) - \frac{\sum_{j \in V, \#neighs(j) = \#neighs(j)} P_t(j)}{card(\{j \in V, \#neighs(j) = \#neighs(i)\})}$

- Input: BGP announces
 - BGP ranking (additional input/knowledge)
 - \blacktriangleright AS graph representation \rightarrow graph analysis

S3 / 62 ∧

S4 / 62 ∧

1 Introduction Some facts

Motivation

- 2 Traffic analysis Anomaly detection Botnet detection
- 3 Topology analysis Bad behaviors in Internet Detection Evaluation

4 Conclusion

- Dataset
 - BGP route announces collected at rrc00.ripe.net (Amsterdam)
 - April 2012, 41k ASs
 - AS paths: 7243k / 1028k (unique)
 - As graph edges: 95k
- Methodology
 - no groundtruth
 - $\blacktriangleright \rightarrow$ use theoretical estimation = natural definition of malware transit AS
 - cannot be applied to all ASs
 - ➤ → check coherency of the output of PageRank-based approach with the theoretical estimation

○55 / 62 ∧

AS index ordered by BGP ranking (reverse)

○56 / 62 ∧

PageRank-based analysis

- Damping factor impacts a lot the results
- variation coefficient $(\sigma/\mu) = 0.41$
- Criteria
 - Always in top 30 \rightarrow Malware Transit AS \rightarrow 23 AS
 - ► Always out of top 30 → Normal AS
- Worst case analysis: normal AS in top 30-100 \rightarrow 30 AS

- Theoretical estimation (single AS) of selected AS
 - ► Malware transit AS are clearly distinguishable → global analysis is coherent with the natural definition
- ▶ First value (index 0) = BGP ranking
 - no correlation between BGP ranking and the malware transit measure
 - $\blacktriangleright \ \rightarrow$ the malware hoster are not the malware forwarder
- Malware transit AS

Normal AS

○57 / 62

- Sample topology extraction
 - ► 2 malware transit ASs: T14, T27
 - High BGP ranking \rightarrow light color, higher size

S8 / 62 ∧

Malware transit AS detection

- domain not well covered until now
- ▶ graph analysis approach → global analysis + low complexity

S9 / 62 ∧

- ▶ practical validation → famous countries
- publication: IM'13
- Future work
 - enhanced metric / graph analysis
 - time series evaluation

○60 / 62 ∧

Introduction Some facts Motivation

- 2 Traffic analysis Anomaly detection Botnet detection
- 3 Topology analysis Bad behaviors in Internet Detection Evaluation

4 Conclusion

- Graph analysis = accurate way to assess security in Internet
 - ► data selection? → what should a graph represent and highlight?
 - analysis \rightarrow more sophisticated method ?
- Some issues
 - algorithm tuning \rightarrow learning
 - datasets
 - real data including various users, services, etc.

○61 / 62 ∧

- labeled traffic (attacks)
- recent
- \blacktriangleright \rightarrow www.caida.org/data/

Scalable Analysis for Network Monitoring and Forensics Purposes

Jérôme François

