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Purpose of community detection?
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Multiscale community structure in a graph

finest scale (16 com.):

even coarser scale (4 com.):

coarser scale (8 com.):

coarsest scale (2 com.):
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Multiscale community structure in a graph

Classical community detection algorithm do not have this
“scale-vision“ of a graph. Modularity optimisation finds:

Where the modularity function reads:

Q = 1
2N

∑
ij

[
Aij −

didj
2N

]
δ(ci , cj)
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Multiscale community structure in a graph

Q=0.80 :

Q=0.74 :

Q=0.83 :

Q=0.50 :

All representations are correct but
modularity optimisation favours one.
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Related work

• Lambiotte, ”Multiscale modularity in complex networks“ (2010)

• Schaub et al., ”Markov dynamics as a zooming lens for multiscale
community detection: non clique-like communities and the
field-of-view limit“ (2012)

• Arenas et al., ”Analysis of the structure of complex networks at
different resolution levels“ (2008)

• Reichardt et al., ”Statistical Mechanics of Community Detection“
(2006)

• Mucha et al., ”Community Structure in Time-Dependent,
Multiscale, and Multiplex Networks“ (2010)
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Purpose of this work

Develop a scale dependent community mining tool

General Ideas

• Take advantage of local information encoded in Graph
Wavelets

• Cluster together nodes whose local environments are similar
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Notations

G = (V ,E ,w) a weighted graph
N = |V | number of nodes

A adjacency matrix A(i , j) = wij

d vector of strengths di =
∑

j∈V wij

Laplacian matrix

L laplacian matrix L = diag(d)− A
(λi) L’s eigenvalues 0 = λ0 < λ1 ≤ λ2 ≤ ... ≤ λN − 1

(χi) L’s normalized eigenvectors Lχi = λi χi

Objective

f : signal defined on V ←→ f̂ : Fourier transform of f
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A simple example: the straight line

←→ L =


...
... −1 0 0 0 0
... 2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2 ...
0 0 0 0 −1 ...

...


On the regular line, L is the 1-D classical laplacian operator (i.e.

double derivative operator): its eigenvectors are the Fourier vectors,
and its eigenvalues the associated (squared) frequencies.

Fundamental analogy

On any graph, the eigenvectors χi of the Laplacian matrix L will be
considered as the Fourier vectors, and its eigenvalues λi the associated
(squared) frequencies.
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The graph Fourier transform

• f̂ is obtained from f ’s decomposition on the eigenvectors χi :

f̂ =


< χ0, f >
< χ1, f >
< χ2, f >

...
< χN − 1, f >


Define χ = (χ0|χ1|...|χN − 1) : f̂ = χ> f

• Reciprocally, the inverse Fourier transform reads: f = χ f̂

• The Parseval theorem is valid: ∀(g , h) < g , h >=< ĝ , ĥ >
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Filtering

Definition of graph filtering

We define a filter function g in the Fourier space.
It is discrete and defined on the eigenvalues λi → g(λi).

f̂ g =

 f̂ (0) g(λ0)

f̂ (1) g(λ1)

f̂ (2) g(λ2)
...

f̂ (N−1) g(λN − 1)

 = Ĝ f̂ with Ĝ =

 g(λ0) 0 0 ... 0
0 g(λ1) 0 ... 0
0 0 g(λ2) ... 0
... ... ... ... ...
0 0 0 ... g(λN − 1)



In the node-space, the filtered signal f g can be written: f g = χ Ĝχ> f
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Spectral analysis: the χi and λi of the multi scale toy graph

Mode #
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Some Fourier modes

χ1

χ14

χ3

χ73

The first few eigenvectors are very important
for community detection
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Graph Wavelets

• Fourier is a global analysis. Fourier modes (eigenvectors of
the laplacian) are used in classical spectral clustering, but do
not enable a scale dependent analysis: we need wavelets.

• Classical wavelets
by analogy−−−−−−→ Graph wavelets
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The classical wavelets

Each wav. ψs,a is derived by translating and scaling a mother wav. ψ:

ψs,a(x) =
1

s
ψ

(
x − a

s

)
Equivalently, in the Fourier domain:

ψ̂s,a(ω) =

∫ ∞
−∞

1

s
ψ

(
x − a

s

)
exp−iωx dx

= exp−iωa
∫ ∞
−∞

1

s
ψ

(
X

s

)
exp−iωX dX

= exp−iωa
∫ ∞
−∞

ψ
(
X ′
)

exp−iωX
′
dX ′

= δ̂a(ω) ψ̂(sω) where δa = δ(x − a)

One possible definition: ψs,a(x) =
∫∞
−∞ δ̂a(ω)ψ̂(sω) expiωx dω
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The classical wavelets

ψs,a(x) =
∫∞
−∞ δ̂a(ω)ψ̂(sω) expiωx dω

• In this definition, ψ̂(sω) acts as a filter bank defined by
scaling by a factor s a filter kernel function defined in the
Fourier space: ψ̂(ω)

• The filter kernel function ψ̂(ω) is necessarily a bandpass
filter with:

• ψ̂(0) = 0 : the mean of ψ is by definition null
• lim

ω→+∞
ψ̂(ω) = 0 : the norm of ψ is by definition finite
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Classical wavelets
by analogy−−−−−→ Graph wavelets (Hammond ’11)

Classical (continuous) world Graph world

Real domain variable x node a

Fourier domain variable ω eigenvalues λi

Filter kernel function ψ̂(ω) g(λi)⇔ Ĝ

Filter bank ψ̂(sω) g(sλi)⇔ Ĝs

Fourier modes exp−iωx eigenvectors χi

Fourier transform of f f̂ (ω) =
∫∞
−∞ f (x) exp−iωx dx f̂ = χ> f

The wavelet at scale s centered around node a is given by:

ψs,a(x) =

∫ ∞
−∞

δ̂a(ω)ψ̂(sω) expiωx dω −−−→ ψs,a = χ Ĝsδ̂a = χ Ĝsχ> δa
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Examples of wavelets

ψs=1,a

ψs=35,a

ψs=25,a

ψs=50,a
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The graph scaling functions

• Consider the following lowpass filter kernel h:

h(ω) =

(∫ ∞
ω

|g(ω′)|2

ω′
dω′
)1/2

Classically, if g corresponds to a wavelet filter kernel, this
equation defines the associated scaling function filter kernel.

• With the same arguments as previously, we define the graph
scaling function at scale s centered around a as:

φs,a = χ Ĥsδ̂a = χ Ĥsχ> δa
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Examples of scaling functions

φs=1,a

φs=35,a

φs=25,a

φs=50,a
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Example of filters

For each graph under study, we automatically find the good filter
parameters for g by imposing:

• The coarsest scale needs to be focused on the first mode χ1.

• All scales need at least to keep some information from χ1.

• The finest scale needs to use the information from all modes.
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Important note

In the following, we will not actually perform a Wavelet Transform
of any signal: we will rather focus on the wavelets ψi and take

advantage of the topological information encoded in them
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Application to detection of
communities
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The three key points of clustering

Any clustering technique is based on the choice of:

1. feature vectors for each node

2. a distance to measure two given vectors’ closeness

3. a clustering algorithm to separate nodes in clusters

We choose to use:

1. wavelets (resp. scaling functions) as feature vectors

2. the correlation distance

3. the complete linkage clustering algorithm
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Introduction Graph Fourier Transform Spectral Graph Wavelets Community mining Real-world graphs Conclusion

Complete linkage clustering

• It is a bottom to top hierarchical algorithm: it starts with as
many clusters as nodes and works its way up to fewer clusters
(by linking subclusters together) until it reaches one global
cluster.

• To compute the distance between two subclusters under
examination : all possible pairs of nodes, taking one from each
cluster, are considered. The maximum possible node-to-node
distance is declared to be the cluster-to-cluster closeness.

• Outputs a dendrogram (from Greek dendron ”tree” and
gramma ”drawing”).
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Example of a dendrogram at a given scale s
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The big question: where should we cut the dendrogram?
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With prior knowledge

Let us cheat by using prior knowledge on the number of
communities we are looking for.
If we cut each dendrogram in two clusters
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With prior knowledge

Let us cheat by using prior knowledge on the number of
communities we are looking for.
If we cut each dendrogram in four clusters
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With prior knowledge

Let us cheat by using prior knowledge on the number of
communities we are looking for.
If we cut each dendrogram in eight clusters
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With prior knowledge

Let us cheat by using prior knowledge on the number of
communities we are looking for.
If we cut each dendrogram in sixteen clusters
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With prior knowledge

Let us cheat by using prior knowledge on the number of
communities we are looking for.
The four levels of communities.

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

scale number

A
R

 c
o

e
ff

ic
ie

n
t

Using wavelets

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

scale number

A
R

 c
o

e
ff

ic
ie

n
t

Using scaling functions

N. Tremblay Wavelets for Community Mining April, 11th 2013 27 / 39



Introduction Graph Fourier Transform Spectral Graph Wavelets Community mining Real-world graphs Conclusion

With prior knowledge

Let us cheat by using prior knowledge on the number of
communities we are looking for.
The four levels of communities.

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

scale number

A
R

 c
o

e
ff

ic
ie

n
t

Using wavelets

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

scale number

A
R

 c
o

e
ff

ic
ie

n
t

Using scaling functions

N. Tremblay Wavelets for Community Mining April, 11th 2013 27 / 39



Introduction Graph Fourier Transform Spectral Graph Wavelets Community mining Real-world graphs Conclusion

Without prior knowledge

We cut the dendrogram at its maximal gap.

At small scale:
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Without prior knowledge
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Without prior knowledge
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Another toy graph
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The filtered modularity

We define the filtered adjacency matrices at scale s:

• recall that A = D
1
2χ(I − Λ)χ>D

1
2

• Ag
s = A + D

1
2χĜsχ

>D−
1
2 A

• Ah
s = D

1
2χĤsχ

>D−
1
2 A

The classical modularity reads: B(A) = 1
2m

(A + dd>

2m
)

where d is the strength vector and 2m =
∑

d(i)

We define the filtered modularity matrices at scale s:

Bg
s = B(Ag

s ) and Bh
s = B(Ah

s )
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Maximize filtered modularity

Maximal Gap

Filtered Modu Opt. Classical Modu Opt.

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

scale number

A
R

 c
o

e
ff

ic
ie

n
t

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

scale number

A
R

 c
o

e
ff

ic
ie

n
t

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

scale number

A
R

 c
o

e
ff

ic
ie

n
t

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

scale number

A
R

 c
o

e
ff

ic
ie

n
t

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

scale number

A
R

 c
o

e
ff

ic
ie

n
t

0 10 20 30 40 50
0.2

0.4

0.6

0.8

1

scale number

A
R

 c
o

e
ff

ic
ie

n
t

N. Tremblay Wavelets for Community Mining April, 11th 2013 33 / 39



Introduction Graph Fourier Transform Spectral Graph Wavelets Community mining Real-world graphs Conclusion

Maximize filtered modularity

Maximal Gap Filtered Modu Opt.

Classical Modu Opt.
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Maximize filtered modularity

Maximal Gap Filtered Modu Opt. Classical Modu Opt.
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Two real-world graphs
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Intra-chromosomic interaction data

Collaboration with R. Boulos, B. Audit (ENS Lyon)
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Evolution of the correlation matrix of the wavelets
with respect to scale

Collaboration with R. Boulos, B. Audit (ENS Lyon)
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The dynamic social network of a primary school

Collaboration with A. Barrat (CPT Marseille)
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Multi-scale Communities in Primary School

Collaboration with A. Barrat (CPT Marseille)
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Conclusion

• Wavelet ψs,a gives an ”egocentered view“ of the network seen
from node a at scale s

• Correlation between these different views gives us a distance
between nodes at scale s

• This enables multi-scale clustering of nodes in communities

I did not mention:

• the design of the filters

• the scale boundaries of the parameter ”s“

• how we choose the relevant scales (we use a notion of stability
of each partition)
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Thank you for your attention!
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The Adjusted Rand Index

Let:

• C and C′ be two partitions we want to compare.

• a be the # of pairs of nodes that are in the same community
in C and in the same community in C′

• b be the # of pairs of nodes that are in different communities
in C and in different communities in C′

• c be the # of pairs of nodes that are in the same community
in C and in different communities in C′

• d be the # of pairs of nodes that are in different communities
in C and in the same community in C′

a + b is the number of “agreements“ between C and C′.
c + d is the number of “disagreements“ between C and C′.
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The Adjusted Rand Index

The Rand index, R, is:

R =
a + b

a + b + c + d
=

a + b(n
2

)
The Adjusted Rand index AR is the corrected-for-chance version of
the Rand index:

AR =
R − ExpectedIndex

MaxIndex − ExpectedIndex
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The filtered modularity

Ag
s = A + D

1
2χĜsχ

>D−
1
2 A

Consider d the vector of strengths of A and 2m the sum of the
strengths. The classical modularity reads:

B =
A

2m
− dd>

(2m)2

Consider d ′ the vector of strengths of Ag
s and 2m′ the sum of the

strengths. We can show that:

dd>

(2m)2
=

d ′d ′>

(2m′)2

Moreover, if gs(1) = 0 (which is the case), the filtered modularity
reads:

Bg
s =

A + D
1
2χĜsχ

>D−
1
2 A

2m
− dd>

(2m)2
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The filtered modularity

Bg
s =

A + D
1
2χĜsχ

>D−
1
2 A

2m
− dd>

(2m)2

Recall that modularity compares the actual normalised weight
Aij

2m
to the expected weight if the graph was a random Chung-Lu

graph:
didj
(2m)2

.

The filtered modularity does not change the expected weight but
rather changes the actual normalised weigth: it adds or retrieve

value to
Aij

2m . At small scale, it will increase the weights important
for small scale structures and decrease the weights important for
superstructures.
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The filtered modularity

It can be written:

Bg
s =

1

2m

N∑
i=2

(1 + gs(i))(1− λi )D
1
2χiχ

>
i D

1
2

To compare to Delvenne’s filtered modularity:

Bt =
1

2m

N∑
i=2

(1− λi )tD
1
2χiχ

>
i D

1
2

And Arenas’ version: (here for regular networks)

Bα =
1

2m

N∑
i=2

(1− λi
α

)D
1
2χiχ

>
i D

1
2
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