Connectivity threshold of Bluetooth graphs

Nicolas Broutin, *Inria Paris-Rocquencourt*

joint work with L. Devroye, *McGill*

N. Fraiman, *McGill*

G. Lugosi, *Pompeu Frabra*
Random geometric graphs

\[G(n, r) \quad N = \text{Poisson}(n) \text{ uniform points in } \mathcal{D} \subseteq \mathbb{R}^d \]

\[i \sim j \text{ iif } \|X_i - X_j\| < r \]
Random geometric graphs

\[G(n, r) \quad N = \text{Poisson}(n) \text{ uniform points in } D \subseteq \mathbb{R}^d \]

\[i \sim j \text{ iif } \|X_i - X_j\| < r \]
Random geometric graphs

\[G(n, r) \]

\[N = \text{Poisson}(n) \text{ uniform points in } D \subseteq \mathbb{R}^d \]

\[i \sim j \text{ iif } \|X_i - X_j\| < r \]
Random geometric graphs

\[G(n, r) \]

\[N = \text{Poisson}(n) \text{ uniform points in } \mathcal{D} \subseteq \mathbb{R}^d \]

\[i \sim j \text{ iif } \|X_i - X_j\| < r \]
Random geometric graphs

\[G(n, r) \quad N = \text{Poisson}(n) \text{ uniform points in } \mathcal{D} \subseteq \mathbb{R}^d \]

\[i \sim j \text{ iiif } \|X_i - X_j\| < r \]
Random geometric graphs

\[G(n, r) \quad N = \text{Poisson}(n) \text{ uniform points in } \mathcal{D} \subseteq \mathbb{R}^d \]

\[i \sim j \text{ ii}f \quad \|X_i - X_j\| < r \]
Random irrigation graphs

\(G(n, r) \) gets connected when average degree is \(\Theta(\log n) \)

idea:
sparsify the graph
in a distributed way
while ensuring connected

irrigation graphs \(S_n(r, c) \)
every point ”sees” his neighbours in \(G(n, r) \)
every point keeps \(c \) neighbours chosen at random
Random irrigation graphs

$G(n, r)$ gets connected when average degree is $\Theta(\log n)$

idea: sparsify the graph in a distributed way while ensuring connected

irrigation graphs $S_n(r, c)$

- every point "sees" his neighbours in $G(n, r)$
- every point keeps c neighbours chosen at random
Random irrigation graphs

\[G(n, r) \] gets connected when average degree is \(\Theta(\log n) \)

idea: sparsify the graph in a distributed way while ensuring connected

irrigation graphs \(S_n(r, c) \)

- every point ”sees” his neighbours in \(G(n, r) \)
- every point keeps \(c \) neighbours chosen at random
Random irrigation graphs
Random irrigation graphs
History and results

Previous results:

Dubhashi, Johansson, Häggström, Panconesi, and Sozio

\[r = \Theta(1) \implies S_n(r, 2) \text{ is connected whp} \]

BUT: expander! Fenner–Frieze

Crescenzi, Nocentini, Pietracaprina, Pucci

\[d = 2 \quad r > \sqrt{\frac{\log n}{n}} \implies S_n(r, c) \text{ is connected whp} \]

\[c > \gamma_2 \log(1/r) \]
Main result

Theorem. \(\mathcal{D} = [0, 1]^d \quad \epsilon \in (0, 1) \)

\[r > \gamma d \sqrt{\log n / n} \quad \frac{\log(nr^d)}{\log \log n} \rightarrow \lambda \in [1, \infty] \]

1. \(c = \left\lfloor \sqrt{(1 - \epsilon) \left(\frac{\lambda}{\lambda - 1/2} \right) \frac{\log n}{\log(nr^d)}} \right\rfloor \)

Then \(S_n(r, c) \) is disconnected whp

2. \(c = \left\lfloor \sqrt{(1 + \epsilon) \left(\frac{\lambda}{\lambda - 1/2} \right) \frac{\log n}{\log(nr^d)}} \right\rfloor \)

Then \(S_n(r, c) \) is connected whp
Connectivity of random graphs

Connectivity ⇔ ∄ a cut without edges

Typical model. \(G(n, p) \) \(n \) vertices \(\{1, 2, \ldots, n\} \)
\(i \sim j \) with proba \(p \)

Lower bound. find a cut that does not contain edges

Given that there is a cut, how large should it be?

number of cuts of size \(k \) \(\binom{n}{k} \)
probability that it is empty: \((1 - p)^{k(n-k)} \)

Strategy: Find the best possible “local” obstruction
gives a bound on the parameter \(p \)
Prove that above the graph is connected
Connectivity of random geometric graphs

Threshold for connectivity for $G(n, p)$

cheapest obstruction: isolated vertex

$$p \sim \frac{\log n}{n} \quad \text{given by } n\mathbb{P}(\text{Bin}(n-1, p) = 0) = 1$$

\Rightarrow average degree about $\log n$

Threshold for connectivity of random geometric graphs:

empty cut \approx tube of width r containing no point

Cheapest obstruction: isolated vertex

$$r \sim \gamma \sqrt{\frac{\log n}{n}} \quad \text{given by } n\mathbb{P}(B(x, r) = \emptyset) = 1$$
Lower bound: a cheap obstruction

Cheapest possible obstruction isolated \((c + 1)\)-clique

Fix \(c + 1\) vertices

\[
\Pr(\text{isolated } (c + 1)\text{-clique}) \geq \Pr(c + 1 \text{ choose among them}) \\
\times \Pr(\text{no other chooses them})
\]

\[
\Pr(\text{choose among them}) \geq \left(\frac{c}{\beta \log n} \right)^{c(c+1)}
\]

\[
\Pr(\text{others don’t pick them}) \geq \left(1 - \frac{c + 1}{\alpha \log n} \right) #
\]

and
\[
\leq c \beta \log n
\]

Find the value \(c\) such that
\[
\frac{n}{c + 1} \left(\frac{\alpha \log n}{c} \right) \times \Pr(\text{ok}) = 1
\]
Strategy for an upper bound

Need to “construct” the connectivity

1. discretize the square $[0, 1]^2$ in Q_i, $1 \leq i \leq [1/r]^2$

2. start from good local events

3. try to propagate connectivity to the entire graph

\[r \sim \gamma \sqrt{\frac{\log n}{n}} \quad \mathcal{P} = \{X_1, \ldots, X_N\} \]

\[N \sim \text{Poisson}(n) \]

Uniformity: whp, for all balls and cells

\[\alpha_1 nr^2 \leq \#\mathcal{P} \cap B(X_i, r) \leq \beta_1 nr^2 \]

\[\alpha_1 nr^2 \leq \#\mathcal{P} \cap Q_i \leq \beta_1 nr^2 \]
High level approach

Notation.

black if all points in it are connected w/o using the outside
*-connected: share at least a corner
connected: share a face and linked by an edge of S_n
Main strategy

Suppose:

1. all cells are occupied and connected to their neighbours
2. largest *-connected white component $\leq q$
3. smallest c.c. of S_n is at least s
4. every cell contains $\geq \lambda \log n$ points

Proposition. Suppose 1-4 hold with:

$$ q = o \left(r^{-1/2} \right) $$

Then, S_n is connected

$$ \frac{s}{\lambda \log n} > q^2 $$
Sketch of proof

(a) exists a black crossing of size $\geq 1/r$

Recolor blue the cells in small c.c.

(b) all remaining black cells are connected

(isoperimetry)

(c) each vertex connects to the black c.c.

X_i not connected to the black c.c.

C the set of cells it touches

K^* the enlargement of C with white/blue cells

(isoperimetry)
The largest *-connected white component

Aim. \(q = 2(\log n)^{2/3} \quad s = \exp((\log n)^{1/3}) \)

bound on the number of *-connected components of size \(k \)

\[\#\{\text{spanning trees of size } k\} \leq nC^k \]

if probability to be white \(p \leq \exp(-(\log n)^{1/3}) \)

\[\mathbb{E} [\#\{\text{spanning trees } \geq q\}] \leq n \sum_{k \geq q} (pC)^k = O(1/n) \]

push + pull

grow 2 neighborhoods of a single vertex
large enough for all other vertices to hook up

\((2d)^d\)
The smallest connected component of S_n

\[
c = \sqrt{\frac{(2 + \epsilon) \log n}{\log \log n}}
\]

\[
\hat{c} = \sqrt{\frac{(2 + \epsilon/2) \log n}{\log \log n}}
\]

For $L = L(\epsilon)$ a constant, do L rounds:

1. round one each vertex selects \hat{c} neighbors

2. in the following rounds, each vertex selects

\[
\frac{c - \hat{c}}{L} = \Delta \sqrt{\frac{2 \log n}{\log \log n}}
\]

\[
\delta \log n \times 2^{(c - \hat{c})/L} \geq \exp((\log n)^{1/3})
\]

idea: after round one, the smallest c.c. $\geq \delta \log n$

in the following rounds, each c.c. doubles
Bound expected number of c.c. of size h

$$\#\{\text{potential c.c. of size } h\} \leq n(\beta nr^2)^h$$

in a c.c. vertices must choose neighbors among themselves

Can choose δ independent of ϵ such that if $h \leq \delta \log n$ the probability that this occurs is too small
Smallest component of S_n – doubling rounds

Idea:
small c.c. have a good chance to shoot outside once it is large enough for this to fail: stop by then, it is at least $n^{1/4} \geq \exp((\log n)^{1/3})$

How a c.c. C after round one populates the cells?

- cell Q_i contains n_i points of C
 - m_i points of other components

Say a cell is red if $n_i > m_i$

1. not all cells can be red!
2. For neighbor cells red/blue P (no connection) $\leq n^{-L\xi}$
3. For neighbor blue cells P (no connection) $\leq n^{-L\xi}$
In one round

\[P(\text{some c.c. does not connect}) \leq n^{1-L\xi} \]

In all the rounds

\[P(\text{some round fails}) \leq \frac{c - \hat{c}}{L} \times n^{1-L\xi} \]

Choose the constant \(L \) large enough
And now...

Do we need full connectivity? ... super giant components other models of “infection-like” graphs?

Bootstrap percolation on random geometric graphs

General approach based on branching arguments?
Thank you!