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Random geometric graphs

G (n, r) N = Poisson(n) uniform points in D ⊆ Rd

i ∼ j iif ‖Xi − Xj‖ < r
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Random irrigation graphs

G (n, r) gets connected when average degree is Θ(log n)

idea: sparsify the graph
in a distributed way
while ensuring connected

irrigation graphs

every point ”sees” his neighbours in G (n, r)

every point keeps c neighbours chosen at random

Sn(r , c)
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History and results

Dubhashi, Johansson, Häggström, Panconesi, and Sozio

Previous results:

r = Θ(1) Sn(r , 2) is connected whp

d = 2 r >
√

log n/n

c > γ2 log(1/r)
Sn(r , c) is connected whp

Crescenzi, Nocentini, Pietracaprina, Pucci

⇒

⇒

BUT : expander! Fenner–Frieze



Main result

Theorem.

r > γ d
√

log n/n

D = [0, 1]d

log(nrd)

log log n
→ λ ∈ [1,∞]

ε ∈ (0, 1)

c =

⌊√
(1− ε)

(
λ

λ− 1/2

)
log n

log(nrd)

⌋
Then Sn(r , c) is disconnected whp

c =

⌊√
(1 + ε)

(
λ

λ− 1/2

)
log n

log(nrd)

⌋
1.

2.

Then Sn(r , c) is connected whp



Connectivity of random graphs

Connectivity 6 ∃ a cut without edges⇔

Lower bound. find a cut that does not contain edges

Strategy: Find the best possible “local” obstruction
gives a bound on the parameter p
Prove that above the graph is connected

Given that there is a cut, how large should it be?

number of cuts of size k
(
n
k

)
probability that it is empty: (1− p)k(n−k)

Typical model. G (n, p) n vertices {1, 2, . . . , n}

i ∼ j with proba p



Connectivity of random geometric graphs

Cheapest obstruction: isolated vertex

Threshold for connectivity for G (n, p)

p ∼ log n

n

⇒ average degree about log n

Threshold for connectivity of random geometric graphs:

empty cut ≈ tube of width r contaning no point

r ∼ γ
√

log n

n
given by nP (B(x , r) = ∅) = 1

given by nP (Bin(n − 1, p) = 0) = 1

cheapest obstruction: isolated vertex



Lower bound: a cheap obstruction

Cheapest possible obstruction isolated (c + 1)-clique

Fix c + 1 vertices

P (isolated (c + 1)-clique) ≥ P (c + 1 choose among them)

×P (no other chooses them)

P (c + 1 choose among them) ≥
(

c

β log n

)c(c+1)

P (others don’t pick them) ≥
(

1− c + 1

α log n

)#

and # ≤ cβ log n

Find the value c such that
n

c + 1

(
α log n

c

)
× P (ok) = 1



Strategy for an upper bound

Need to “construct” the connectivity

1. discretize the square [0, 1]2 in Qi , 1 ≤ i ≤ b1/rc2

2. start from good local events

3. try to propagate connectivity to the entire graph

r ∼ γ

√
log n

n

Uniformity:

α1nr
2 ≤ #P ∩ B(Xi , r) ≤ β1nr2

α1nr
2 ≤ #P ∩ Qi ≤ β1nr2

whp, for all balls and cells

P = {X1, . . . ,XN}

N ∼Poisson(n)



High level approach

Notation.

black if all points in it are connected w/o using the outside

*-connected: share at least a corner

connected: share a face and linked by an edge of Sn



Main strategy

Proposition. Suppose 1-4 hold with:

q = o
(
r−1/2

) s

λ log n
> q2

Then, Sn is connected

Suppose:

1. all cells are occupied and connected to their neighbours

2. largest *-connected white component ≤ q

3. smallest c.c. of Sn is at least s

4. every cell contains ≥ λ log n points



Sketch of proof

K

K ′

∂K3

∂K1

∂K4

∂K2

K∗

(a) exists a black crossing
of size ≥ 1/r

(b) all remaining black cells

Recolor blue the cells in small c.c.

are connected

(isoperimetry)

(c) each vertex connects to the black c.c.

Xi not connected to the black c.c.
C the set of cells it touches
K∗ the enlargement of C with white/blue cells
(isoperimetry)



The largest *-connected white component

bound on the number of *-connected components of size k

Aim. q = 2(log n)2/3 s = exp((log n)1/3)

#{spanning trees of size k} ≤ nC k

if probability to be white p ≤ exp(−(log n)1/3)

E [#{spanning trees ≥ q}] ≤ n
∑

k≥q(pC )k = O(1/n)

push + pull

grow 2 neighborhoods of a single vertex
large enough for all other vertices to hook up

(2d)d



The smallest connected component of Sn

c =

√
(2 + ε) log n

log log n
ĉ =

√
(2 + ε/2) log n

log log n

For L = L(ε) a constant, do L rounds:

1. round one each vertex selects ĉ neighbors

2. in the following rounds, each vertex selects

idea: after round one, the smallest c.c. ≥ δ log n

in the following rounds, each c.c. doubles

c − ĉ

L
= ∆

√
2 log n

log log n
δ log n × 2(c−ĉ)/L ≥ exp((log n)1/3)



Smallest component of Sn – round 1

#{potential c.c. of sizeh} ≤ n(βnr2)h

in a c.c. vertices must choose neighbors

Can choose δ independent of ε such that if h ≤ δ log n
the probability that this occurs is too small

Bound expected number of c.c. of size h

among themselves



Smallest component of Sn – doubling rounds

How a c.c. C after round one populates the cells?

cell Qi contains ni points of C

mi points of other components

Say a cell is red if ni > mi

Idea: small c.c. have a good chance to shoot outside

once it is large enough for this to fail: stop

by then, it is at least n1/4 ≥ exp((log n)1/3)

1. not all cells can be red!
2. For neighbor cells red/blue P (no connection) ≤ n−Lξ

3. For neighbor blue cells P (no connection) ≤ n−Lξ



Finishing up

In one round

P (some c.c. does not connect) ≤ n1−Lξ

In all the rounds

P (some round fails) ≤ c − ĉ

L
× n1−Lξ

Choose the constant L large enough



And now...

Do we need full connectivity? ... super giant components

other models of “infection-like” graphs?

Bootstrap percolation on random geometric graphs

General approach based on branching arguments?



Thank you!


