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Some open questions:

@ Long Range Dependence / Heavy Tailed distributions impact on QoS 7

@ Existing models (e.g. Padhye) only predict mean metrics (e.g. throughput) :

what about variability?
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Our approach

To combine theoretical models with controlled experiments in realistic
environments and real-world traffic traces
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Simplified System

Access Point Core Network
Congestion Overdimensioned

— Congestion essentially arises at the access points
—  Simplified System : single bottleneck
— Users’ behavior : ON/OFF source model
— MetroFlux: a probe for traffic capture at packet level (O. Goga,...)
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Scaling Properties of Traffic Heavy tailed distributions and long range dependence

Long memory in aggregated traffic: the Tagqu model

@ Heavy-tailed distributed ON periods: heavy tail index aony > 1

Theorem (Taqgqu, Willinger, Sherman, 1997)
In the limit of a large number of sources Ns., if:
@ flow throughput is constant,
@ same throughput for all flows ;
aggregated bandwidth B(A)(t) is long range dependent, with parameter:

_ 3_060N 1
H—max( 5 ,2)

Long memory: long range correlation (H > 1/2)
Covga)(T) = E {B(A)(t)B(A)(t + T)} ~ F2H-2)

— 00

Variance grows faster than A: Var {BA)(t)} ~ A%
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Scaling Properties of Traffic Heavy tailed distributions and long range dependence

Theorem validation on a realistic environment

@ Controlled experiment: MetroFlux 1 Gbps, 100 sources, 8 hours traffic

@ UDP/TCP: throughput limited to 5 Mbps (no congestion)

ON Distribution Log-diagram Taqqu Prediction
(source) (aggregated traffic)
10° ;
oty +:TCP
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ON duration scale A

= Protocol has no influence at large scales

= Long memory shows up beyond scale A = pon (mean flow duration)

P. Gongalves (Inria) Scaling properties of traffic Complex Networks (Lip6) 6 /25



Scaling Properties of Traffic Heavy tailed distributions and long range dependence

Influence of flow mean throughput / duration correlation

@ Web traffic acquired at in2p3 (Lyon) with MetroFlux 10 Gbps

ON Distribution Size Distribution
o
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ON duration size

@ Heavy-tailed ON periods, aoy = 1.2

@ Heavy tailed flow sizes, as; = 0.85
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Scaling Properties of Traffic Heavy tailed distributions and long range dependence

Influence of flow mean throughput / duration correlation

@ Web traffic acquired at in2p3 (Lyon) with MetroFlux 10 Gbps

ON Distribution Size Distribution Mean throughput
;
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ON duration
@ Heavy-tailed ON periods, aoy = 1.2
@ Heavy tailed flow sizes, as; = 0.85
@ Flow throughput and duration are correlated:

E{thr.|dur.} o (dur.)’™!, B =aon/as (=1.4)

= Which heavy tail index does control LRD ? (aon, as;) ?
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Scaling Properties of Traffic Heavy tailed distributions and long range dependence

Taqqu model extension

@ Planar Poisson process to describe arrival instant vs duration
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Scaling Properties of Traffic Heavy tailed distributions and long range dependence

Taqqu model extension
@ Planar Poisson process to describe arrival instant vs duration

Proposition (LGVBP, 2009)
Model: E{through.|dur.} = M - (dur.)®~*; Var{through.|dur.} = V

Covga) (1) = CM2r—(@on—=2B=1)+1 | /y/ —aon+l
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Scaling Properties of Traffic Heavy tailed distributions and long range dependence
Taqqu model extension

@ Planar Poisson process to describe arrival instant vs duration

Proposition (LGVBP, 2009)
Model: E{through.|dur.} = M - (dur.)®~*; Var{through.|dur.} = V

Covgiay (1) = CMP7~(ov=2(3=1)41 | /7 —erontl

log Var{B®)}

Log-diagram, 8 > 1
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Scaling Properties of Traffic Heavy tailed distributions and long range dependence

Taqqu model extension

@ Planar Poisson process to describe arrival instant vs duration

Proposition (LGVBP, 2009)
Model: E{through.|dur.} = M - (dur.)®~*; Var{through.|dur.} = V

Covga) (1) = CM2—(@on—2(B=D)+1 4 1/ —oon+1

Log-diagram, 8 > 1

H:HTaqqu+(B_l

cM?

@ threshold 7* = (c’v)l/(2(5—1))

— if A> 7" H = Hragqu+ (8—1)

log Var{B®)}

scale A
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Scaling Properties of Traffic Heavy tailed distributions and long range dependence

Taqqu model extension

@ Planar Poisson process to describe arrival instant vs duration

Proposition (LGVBP, 2009)
Model: E{through.|dur.} = M - (dur.)®~*; Var{through.|dur.} = V

Covga) (1) = CM2r—(eon—2B=I)+1 4 7y p—contl

Log-diagram, 8 > 1

H=H -1

Taqqu-'-(B

cM?

@ threshold 7* = (c’v)l/(2(5—1))

— if A > 1*: H:HTaqqu—F(ﬁ—l)
— if A 1*: H:HTaqqu

log Var{B®)}

scale A
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Scaling Properties of Traffic Heavy tailed distributions and long range dependence
Taqqu model extension

@ Planar Poisson process to describe arrival instant vs duration

Proposition (LGVBP, 2009)
Model: E{through.|dur.} = M - (dur.)®~*; Var{through.|dur.} = V

Covgiay (1) = CMP7~(ov=2(3=1)41 | /7 —erontl

log Var{B®)}

Log-diagram, 8 > 1

H=H 1

(B-

+
Taqqu

@ Correlations intensify LRD (8 > 1)
\ @ Traffic evolution, future Internet:
_’:-.’--‘ “flow-aware’” control mechanisms,
; FTTH
7_*
scale A
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Heavy tailed distributions and long range dependence
LRD impact on QoS: a brief (experimental) outlook

The situation is complex. ..
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Heavy tailed distributions and long range dependence
LRD impact on QoS: a brief (experimental) outlook

The situation is complex. . .
@ Negative on finite queues with UDP flows [cf. Mandjes, 2004 (infinite
queues)]

— LRD degrades QoS for large queue sizes (beyond some threshold)
— but the threshold depends on the considered QoS metric (loss rate vs
mean load)
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Scaling Properties of Traffic Heavy tailed distributions and long range dependence

LRD impact on QoS: a brief (experimental) outlook

The situation is complex. . .
@ Negative on finite queues with UDP flows [cf. Mandjes, 2004 (infinite

queues)]
— LRD degrades QoS for large queue sizes (beyond some threshold)
— but the threshold depends on the considered QoS metric (loss rate vs
mean load)
@ Questionable with TCP flows: [Park, 1997] against [Ben Fredj, 2001]
— LRD has contradictory effects on QoS metrics depending on:

with slow start  without slow start

Delay ¢ Va
loss rate ¢ —
mean throughput — N

— Heavy tailed distributions (i.e LRD) can favour QoS for large flows
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Scaling Properties of Traffic Heavy tailed distributions and long range dependence

LRD impact on QoS: a brief (experimental) outlook

The situation is complex. . .
@ Negative on finite queues with UDP flows [cf. Mandjes, 2004 (infinite

queues)]
— LRD degrades QoS for large queue sizes (beyond some threshold)
— but the threshold depends on the considered QoS metric (loss rate vs
mean load)
@ Questionable with TCP flows: [Park, 1997] against [Ben Fredj, 2001]
— LRD has contradictory effects on QoS metrics depending on:

with slow start  without slow start

Delay ¢ Va
loss rate ¢ —
mean throughput — N

— Heavy tailed distributions (i.e LRD) can favour QoS for large flows

@ But in general, QOS is a complex function of multiple variables

P. Gongalves (Inria) Scaling properties of traffic Complex Networks (Lip6) 9/ 25



SN TG CR NNl TCP and large deviations principle

Second level of description : single TCP source traffic

Sources Agrégat

1 [

{01 1

TON  TOFF

v, [ [T
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SN TG CR NNl TCP and large deviations principle

Second level of description : single TCP source traffic

Agrégat

{01

TON  TOFF

v, [ [

@ single TCP source traffic detail
@ Long-lived flow — stationary regime
= How to characterize the congestion window evolution?
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SN TG CR NNl TCP and large deviations principle

Markov model

W; (paquets)

MM

@ long-lived flow stationary regime: AIMD
@ model: (W;);>1 finite Markov chain (irreducible, aperiodic), transition matrix
Q :
{ Qw,min(WJrl,wmax) - 1-— P(W)7
Qw,max(\_w/2j,1) - p(W)

@ p(-) loss probability of at least one packet, only depends on the current
congestion window (hyp.)

@ Example: [Padhye, 1998] Bernoulli loss: p(w) =1 — (1 — ppe)™
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SN TG CR NNl TCP and large deviations principle

Almost sure mean throughput

W; (paquets

WA Ay A
i (RTT)

n

Wi

@ mean throughput at scale n (RTT): W(") — LW

n

Ergodic Birkhoff theorem (1931): almost sure mean
For almost all realisation, the mean throughput at scale n converges towards a value

corresponding to the expectation of the invariant distribution:

n—o00

@ Example: [Padhye, 1998], W™ ~ 3 (RTT=1, MSS=1)

Ppkt —0 2Ppkt
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SN TG CR NNl TCP and large deviations principle

Throughput variability: Large Deviations
o W ~ o # W™ Rare events

w; Large Deviations theorem (Ellis, 84)
<n)|

A A PW = 0) ~ ep(n-f(a))

. @ f(a) Large Deviation spectrum

— Scale invariant quantity

W“)' WM ' f(a)

n 0

W(OCJ a

P. Gongalves (Inria) Scaling properties of traffic Complex Networks (Lip6) 13 /25



TEP il (e alviEtiems piEE
Throughput variability: Large Deviations

o W ~ o # W™ Rare events

Large Deviations theorem (Ellis, 84)

W
WA VW
w )
; P(W"" ~ «a) e exp(n - f(a))
n

. @ f(a) Large Deviation spectrum

— Scale invariant quantity

w;
W“"%M@My (a)
n PR

0

W(OCJ a
= Does a similar theorem exist for a single realization?
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SN TG CR NNl TCP and large deviations principle

Large Deviation on almost all realizations
intervalle 1 intervalle k,

W‘"' %M% LW

k,n
Large Deviation theorem on almost all realisations (Loiseau et al., 2010)
For a given a, if k, > ") then a.s.

#{jE{l,--~,k,,}:WJ(<n)2a}
kn

v o0(n- (@)

@ “Price to pay': exponential increase of the number of intervals
@ Finite realization (of size N): nk, =N

= [amin(n), amax(n)] support of observable spectrum at scale n
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SN TG CR NNl TCP and large deviations principle

Large Deviation on almost all realizations
intervalle 1 intervalle k,

W‘"' %ﬂwx{% LW

k,n

Large Deviation theorem on almost all realisations (Loiseau et al., 2010)

For a given a, if k, > ") then a.s.

. ——(n)
H#jeE{L - kot W; " ~
{J { - } J Oé} : exp(n. f(a))

@ “Price to pay': exponential increase of the number of intervals
@ Finite realization (of size N): nk, =N

= [amin(n), amax(n)] support of observable spectrum at scale n

@ Theory: p(:) = Q — f(a), R(), Amin, @max

@ Practice: (W;)i<y — observed distribution
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TEP il (e alviEtiems piEE
Results: example of Bernoulli losses (ppkt = 0.02)

O,
/g —-0.051
SN—
S
-0.1-
4 W(OO) 10 16

« (packets)
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TEP il (e alviEtiems piEE
Results: example of Bernoulli losses (ppkt = 0.02)

Oor ——
! —theorique
: \ n=100
S -0.05f i
= s
-0.1r i
4 J W('oo) 10 BUETS
« (packets)
@ Apex: almost sure mean: 8.6 packets (Padhye: 3 — 8.66)

2ppkt
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TEP il (e alviEtiems piEE
Results: example of Bernoulli losses (ppkt = 0.02)

or -
—theorique
n=100
== =200
= -0.05¢
g
-0.11 1 H .
1 1
4 mm(ZUU)W(oo 10 maX(ZUU) 16

a (packets)

@ Apex: almost sure mean: 8.6 packets (Padhye: ’/2pk = 8.660)
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TEP il (e alviEtiems piEE
Results: example of Bernoulli losses (ppkt = 0.02)

Oor -
—theorique
n=100
== =200
S -0.05" ==n=500
g
-0.1f - H . :
M H M : |
4 O(mlcrxwmin(5q%)(°°) alrﬂax(500pmax 16
« (packets)
@ Apex: almost sure mean: 8.6 packets (Padhye: 3 — 8.66)

2ppkt
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TEP il (e alviEtiems piEE
Results: example of Bernoulli losses (ppkt = 0.02)

0 -
\ —theorique
f H : , n=100
L : ~n=200
3 -0.05 P ; ; 5 ==n=500
- - H H H == n=1000
bl - . . .
-0.1 o : : i
M H M : |
4 0(m%min W(DO) alrﬂax O(max 16
« (packets)
@ Apex: almost sure mean: 8.6 packets (Padhye: 3 — 8.66)

2ppkt

@ Superimposition at different scales — scale invariance
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TEP il (e alviEtiems piEE
Results: example of Bernoulli losses (ppkt = 0.02)

0
—0.01 [ —theorique
. . HE , n=100
N ~n=200
S -0.05( I : . . = =500
S Lo : b : =—n=1000
he - . HE .
—01f o : o :
M H M 1:1 : |
4 O(m%min W(DO) alrﬂax O(max 16
« (packets)
@ Apex: almost sure mean: 8.6 packets (Padhye: 3 — 8.66)

2ppkt
@ Superimposition at different scales — scale invariance
@ beyond n = 100: variability
n = 100, portion of intervals with mean ~ 11: e—100x0.01 — g 37
n =200, portion of intervals with mean ~ 11: e—200x0.01 — g 14
= More accurate information than the almost sure mean

P. Gongalves (Inria) Scaling properties of traffic Complex Networks (Lip6)

15 / 25



SN TG CR NNl TCP and large deviations principle

Results II: case of a long-lived flow

P. Gongalves (Inria)

1 ] -
__Bernoulli (ppkt—0.007)

@ losses: not Bernoulli rg 05 —empirique
@ empirical losses =
OO 20 40 60 80 100
w
—theo. perte emp. ——theo. perte emp.
—theo. perte Ber. 80y ——theo. perte Ber.
n=100 -*+empirique
=n=200 x 60
=—n=500 g
==n=1000 3
£ 40
£
3 —
201 E::ﬂ:ga
20 40 60 80 0O 200 400 600 800 1000
a (packets) n (RTT)
Scaling properties of traffic Complex Networks (Lip6) 16 / 25



Large Deviations applied to dynamic resource management
Two important assets for Large Deviations Utility

General result ( “Large deviations for the local fluctuations of random walks", J. Barral, P. Loiseau, Stochastic

Processes and their Applications, 2011)
A wide class of processes (stationary & mixing) verifies an empirical large deviation

principle. In particular, this results holds true any time series that can reliably be
modelled by an irreducible, aperiodic Markov process.

Theorem ( “On the estimation of the Large Deviations spectrum", J. Barral, P.G., J. stat. Phys., 2011)

We derived a consistent estimator of the large deviation spectrum from a finite size time
series (observation samples). We proved convergence on mathematical objects with
scale invariance properties (multifractal measures and processes).
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Large Deviations applied to dynamic resource management
An epidemic based model for volatile workload

Goal — Dynamic resource allocation yielding a good compromise between capex and
opex costs
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Large Deviations applied to dynamic resource management
An epidemic based model for volatile workload

Goal — Dynamic resource allocation yielding a good compromise between capex and
opex costs
Approach — Combine the three ingredients:

@ A sensible (epidemic) model to catch the burstiness and the dynamics of the
workload

@ A (Markov) model that verifies a large deviation principle

@ A probabilistic management policy based on the large deviation
characterisation

P. Gongalves (Inria) Scaling properties of traffic Complex Networks (Lip6) 18 / 25



Large Deviations applied to dynamic resource management
An epidemic based model for volatile workload

Goal — Dynamic resource allocation yielding a good compromise between capex and
opex costs
Approach — Combine the three ingredients:

@ A sensible (epidemic) model to catch the burstiness and the dynamics of the
workload

@ A (Markov) model that verifies a large deviation principle
@ A probabilistic management policy based on the large deviation
characterisation

Number of current VoD users

time
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Large Deviations applied to dynamic resource management
An epidemic based model for volatile workload

Goal — Dynamic resource allocation yielding a good compromise between capex and
opex costs
Approach — Combine the three ingredients:

@ A sensible (epidemic) model to catch the burstiness and the dynamics of the
workload

@ A (Markov) model that verifies a large deviation principle
@ A probabilistic management policy based on the large deviation
characterisation

Number of current VoD users A hidden state Markov process with memory effect

pl+r+

time i: current # of viewers / r: current # of infected
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Large Deviations applied to dynamic resource management
An epidemic based model for volatile workload
Calibration and evaluation

VoD workload trace Memory Markov model Modul. Markov Poisson

Steady state distribution Autocorrelation function Param. estimation precision

By B, v w I A H
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Scaling Properties of Traffic Large Deviations applied to dynamic resource management

Markov processes

Under mild conditions, a Markov processes I; verifies a large deviation principle:
P{{ls) ® a} =exp(r-f(a)), T— o0

f(a) : theoretically (from the transition matrix) or empirically (from a finite trace)
identifiable
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Markov processes

Under mild conditions, a Markov processes I; verifies a large deviation principle:
P{{ls) ® a} =exp(r-f(a)), T— o0

f(a) : theoretically (from the transition matrix) or empirically (from a finite trace)
identifiable
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Scaling Properties of Traffic Large Deviations applied to dynamic resource management
Markov processes

Under mild conditions, a Markov processes I; verifies a large deviation principle:
P{{ls) ® a} =exp(r-f(a)), T— o0

f(a) : theoretically (from the transition matrix) or empirically (from a finite trace)
identifiable

0.05
Buzz‘ —Theoretical
or ——50 (Time scale)
64
-0.05 —83
108
—~ 0.1} —139
. 179
oast 232
300
02} 387
—500
-0.25¢

0 2 4 6 8 10 12 14 16 18 20 22 2425
a =<1 >

"Dynamic" implies time scale: a notion that is explicit in large deviation principle
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Semi-supervised machine learning

Parametric generalisation of semi-supervised learning

Standard classification Semi-supervised classification
Training set Validation set
()((t)7 Y(t)) — classifier ()((v)7 Y(L)) C/.ﬂ;ier Y(v/)
such that [Y™) — Y)| ~ 0
Validation set Real data
classifier 4 4 i
XW) Z=RE (D) Yy vy~ 0 (X, Y)Y 2= Apswer
Real d'a.ta Allow to constantly update the classifier
X 2= A pswer | to match data evolution )
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Semi-supervised machine learning

Parametric generalisation of semi-supervised learning

Standard classification Semi-supervised classification
Training set Validation set
(XO, Y®) — classifier (XM, y®) classifler y/(v")
such that |Y() — Y(V/)| ~0
Validation set Real data
classifier 4 4 s

X(V) = Y(V ) . |Y(V) _ Y(V )| ~ 0 (X, Y(L)) clﬂ;er Anerar
Real d.a.ta Allow to constantly update the classifier
X 2sHer A pswer | to match data evolution )
Dataset X=X, X, ..., Xp, Xpt1,-- -, Xn

_’_/

labeled points
Similarity matrix W and D (reap. D*) the row-sum (reap. column)
Label matrix Y ={Yike(0,1) for i=1,...Nand k=1,... K}

Objective (classification) matrix  Fyxx : element j belongs to class k™ = argmax F;
K
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Semi-supervised machine learning

Parametric generalisation of semi-supervised learning

Standard Laplacian solution

N N N
argpax{ wi | Fi = Fi [* +p)_di| Fi— Vi, |2}
i=1 j=1 i=1

! J
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Semi-supervised machine learning

Parametric generalisation of semi-supervised learning

Standard Laplacian solution

N N N
argmax {ZZ wi | Fi— F > +u)_di| Fi—Y; |2}
i=1

i=1 j=1

Generalised semi-supervised classification [M. Sokol, 2012]

N N N
argmax{ wy | df R = dTT P Y T R Y |2}
F i—1 j—1 i—1

! J
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Semi-supervised machine learning

Parametric generalisation of semi-supervised learning

Standard Laplacian solution

argmax{zzwu | Fi—F P +uzd |F= Y| }

i=1 j=1

Generalised semi-supervised classification [M. Sokol, 2012]

NN N
arngnax{ZZ wi | d7 T F - dj”_leA I? +,u2d,-2"_1 | Fi. — Y. |2}

i=1 j=1 i=1
c=1 Standard Laplacian (Random walk from unlabelled to labelled points)
o =1/2 Normalised Laplacian
c=0 PageRank method (Random walk from labelled to unlabelled points)
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Parametric generalisation of semi-supervised learning

Standard Laplacian solution

argmax{zzwu | Fi—F P +uzd |F= Y| }

i=1 j=1

Generalised semi-supervised classification [M. Sokol, 2012]

NN N
arngnax{ZZ wi | d7 T F - dj”_leA I? +,u2d,-2"_1 | Fi. — Y. |2}

i=1 j=1 i=1

c=1 Standard Laplacian (Random walk from unlabelled to labelled points)
o =1/2 Normalised Laplacian

c=0 PageRank method (Random walk from labelled to unlabelled points)

1
[k 2 o—1
Fr=—"——(I-—=——D°WD Y, fork=1,...,K
.k 2+,U/( 2+ ) .k, TOr ) )

Tune the value of parameter o to match the dataset
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et et arel
Duality and semi-supervised learning

ordinatjon

graph (similarity) ~<—  process (metric)

i

N
=1 j

formulation (multidimensional scaling) : argmax{
F

N
(I Fi. = Fi | —ij)z}
=1
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@ bridge ordination (MDS) and generalised semi-supervised learning

> leverage o flexibility to vary duality principle
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et et arel
Duality and semi-supervised learning

ordinatjon

graph (similarity) ~<—  process (metric)

i

N
=1 j

formulation (multidimensional scaling) : argmax{
F

N
(I Fi. = Fi | —ij)z}
=1

@ bridge ordination (MDS) and generalised semi-supervised learning

> leverage o flexibility to vary duality principle

@ data adaptivity of semi-supervised learning

> use to update dynamic graph <+ non-stationary time series
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Follow-up Dynamic graphs analysis

Graph diffusion

Epidemic diffusion (MOSAR): Apply standard tools. ..

> Relationship between virus spreading and graph structure: Can diffusion
wavelets help?

Goarse Scaling Function ‘Scaling Function

‘Scaling Function

Scdling Function

> How to take into account / reflect dynamicity of graphs
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et et arel
Context and collaborations

@ Dante (B. Girault, E. Fleury,...)
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et et arel
Context and collaborations

Dante (B. Girault, E. Fleury,...)
Institut des Systémes Complexes
Sisyphe (ENS Lyon, P. Borgnat)
Other teams (e.g. Geodyn, Maestro. ..)

International cooperations (e.g. EPFL)
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