
Post-Processing Hierarchical Community Structures:
Quality Improvements and Multi-scale View

Pascal Pons and Matthieu Latapy

LIP6 – CNRS and Université Pierre et Marie Curie (UPMC – Paris 6)
104, avenue du Président Kennedy, 75016 Paris, France

Matthieu.Latapy@lip6.fr

Abstract. Dense sub-graphs of sparse graphs (communities), which appear in most real-world
complex networks, play an important role in many contexts. Most existing community detection
algorithms produce a hierarchical structure of communities and seek a partition into communities
that optimizes a given quality function. We propose new methods to improve the results of any
of these algorithms. First we show how to optimize a general class of additive quality functions
(containing the modularity, the performance, and a new similarity-based quality function which
we propose) over a larger set of partitions than the classical methods. Moreover, we define new
multi-scale quality functions which make it possible to detect different scales at which meaningful
community structures appear, while classical approaches find only one partition.

Keywords: hierarchical clustering, community detection, complex network, graph algo-
rithm, multi-scale.

1 Introduction

Recent advances have emphasized the importance of complex networks in many different do-
mains such as sociology (acquaintance networks, collaboration networks), biology (metabolic
networks, gene networks) or computer science (Internet topology, web graph, p2p networks,
e-mail exchanges). We refer the reader to [2, 19, 1, 12, 5] for reviews from different perspectives
and for an extensive bibliography.

The analysis of these networks has brought out important and challenging graph algorithm
problems. One of them is community detection, used to uncover structure in large networks:
the corresponding graphs are generally globally sparse but locally dense; there exist groups of
vertices, called communities, with many links between them but few links to other vertices.
Formally, we consider an undirected graph G = (V,E) with n = |V | vertices, m = |E| edges.
The aim of a community detection algorithm is to find a partition P = {C1, . . . , Ck} of the
vertices (Ci ∩ Cj = ∅ for i 6= j and ∪i Ci = V) that maximizes a given quality function Q(P)
(see Section 2).

Various approaches exist; they belong to a few main methodological categories which
we succinctly overview here. First, the divisive approach starts from the entire graph and
successively splits it into more and more communities. Some algorithms achieve this by re-
moving inter-communities edges (the communities are the remaining connected components)
according to their betweenness [13, 7] or their local clustering [16]. Others use recursive bi-
section mechanisms based on minimum cuts [9] or spectral methods [11]. Another family of
approaches, the agglomerative one, starts from n single-vertex communities and merges them
successively into larger and larger communities. Some algorithms use hierarchical clustering
methods according to different similarity measurements based on spectral properties [4] or
random walks [15, 14, 21]. Other algorithms are based on greedy optimization of a quality

function [?,3]. Finally, direct approaches trying to perform global optimization of a quality
function [6, 8], or iteratively modifying the weight of the edges to make clusters appear [20],
have also been used.

Most community detection algorithms induce series of partitions P0, . . . ,Pc corresponding
to successive steps of the algorithm: Pk+1 = Pk\{Ck} ∪ {C′1, . . . , C′j} with Ck = ∪j

i=1C′i and
P0 = V . If one considers a divisive algorithm the partitions Pk are obtained in increasing order
of the steps k, and in decreasing order if one considers an agglomerative algorithm. Classical
community detection algorithms output the partition that maximizes a given quality function
Q among the c partitions P0, . . . ,Pc.

One then defines the dendrogram associated to the running of the algorithm as the tree in
which C′1, . . . , C′j are the children of Ck, with the above notation, for all step k. We consider
in this paper the situation where the dendrogram resulting from a running of a community
detection algorithm on G is given. There are at most n steps as described above (c < n), which
produce a set S of c+n subsets of V : c subsets Ck corresponding to the steps of the algorithm
plus n single-vertex sets. Many possible partitions are induced by these subsets; we denote
Π the set of all these possible partitions: Π = {P|∀C ∈ P, C ∈ S and ∪C∈P C = V and ∀Ci 6=
Cj ∈ P, Ci ∩ Cj = ∅}. Intuitively these partitions are given by horizontal (but not necessarily
straight) cuts of the associated dendrogram (Figure 1b). We also define in the same manner
the sets ΠC of all possible partitions of a community C in S. The reader must keep in mind
that, throughout this paper, we will never consider any partition (or sub-partition) containing
a community that is not in S, the set of all communities induced by the given dendrogram.

Contribution

We introduce in this paper new post-processing methods to improve the results of any algo-
rithm that finds hierarchical community structures (encoded by the dendrogram). We address
the two following limitations of previous contributions.

First, we note that considering all possible partitions in Π (instead of only the c + 1
partitions P0, . . . ,Pc) will necessarily produce better results than the classical method, and
cannot be worse. The number of valid partitions being exponential in general, it is impossible
to find efficiently the partition that maximizes an arbitrary quality function. However, we
will show in Section 2 that this is possible with some reasonable assumptions on the quality
function Q(P). These results are obtained for a general class of additive quality functions that
contains the modularity [13], the performance [2] and a new similarity-based quality function
which we introduce in Section 2.

Second, we propose in Section 3 multi-scale quality functions in order to detect community
structures at different scales and to determine the most relevant scales at which the graph
should be observed.

We will finally evaluate the benefits of these new approaches with some experiments
(Section 4).

2 Improving the partition into communities

In this section, we first introduce a general class of additive quality functions. We show that
such functions can be efficiently optimized1 over all possible partitions P ∈ Π encoded in a
dendrogram.
1 Without loss of generality we can consider that the function must be maximized.

2

Definition 1. A quality function Q is additive if there exists an elementary function q, such
that for any partition P:

Q(P) =
∑
C∈P

q(C)

Let us first show that this definition is not too restrictive by considering three special cases
of interest.

The modularity introduced in [13] has already been widely used [?,3, 4, 6–8, 13]. It relies on the

internal and total fractions of edges bond to a community C, respectively e(C) =
∑
i∈C

∑
j∈C

Aij

2m

and a(C) =
∑
i∈C

∑
j∈V

Aij

2m
(A is the adjacency matrix and m the number of edges).

QM (P) =
∑
C∈P

e(C)− a(C)2

This definition directly induces that the modularity is additive, using qM (C) = e(C)− a(C)2.
We may also notice that it satisfies −1 ≤ QM (P) ≤ 1, and that each evaluation of the function
can be done in O(m).

The performance [2] counts the number of correctly classified pairs of vertices (either two
vertices belonging to the same community and connected by an edge, or two vertices belonging
to different communities and not connected by an edge):

QP (P) =
|{{u, v} ∈ E, C(u) = C(v)}|+ |{{u, v} /∈ E, C(u) 6= C(v)}|

1
2n(n− 1)

where C(u) denotes the community containing vertex u in the partition P. The function QP

is the fraction of correctly identified pairs of links, and so 0 ≤ QP (P) ≤ 1. Its additivity is
proved using qP (C) = 1

n(n−1)

∑
u∈C |{v ∈ C, {u, v} ∈ E}|+ |{v /∈ C, {u, v} /∈ E}|. This quality

function can be computed in O(n2) and may be generalized to weighted graph as discussed
in [2].

A similarity based quality function. This approach supposes that we have a distance dij ≥ 0
measuring the similarity between any pair of vertices i and j (the smaller dij is, the more simi-
lar i and j are). We want to find homogeneous communities by minimizing their heterogeneity
quantified by the mean square sum of the distances σ(C) = 1

|C|
∑

i,j∈C d2
ij .

However, minimizing these quantities leads to the partition with n single-vertex commu-
nity. We will avoid this by minimizing at the same time the number c(P) of communities
in the partition. The maximal values of these quantities (namely σ(C) ≤ σmax obtained for
C = V , and c(P) ≤ n) are used in the following definition:

QS(P) = −c(P)
n
−

∑
C∈P

σ(C)
σmax

This quality function satisfies −2 ≤ QS(P) ≤ 0. We prove that it is additive using qS(C) =
− 1

n −
σ(C)
σmax

. Each evaluation of σ(C) requires O(|C|2) distance computations for an arbitrary
distance. However if d is an Euclidean distance then σ(Ci∪Cj) can be obtained from σ(Ci) and

3

σ(Cj) with only one additional distance computation. Therefore all the σ(C) can be obtained
with n distance computations in this case. Such a distance, based on random walks, was
proposed in [15, 14] together with an agglomerative community detection algorithm which
computes the values of σ(C). Thus this quality function can be used within the framework
presented here at no additional cost.

The examples above show that the class of additive quality functions is quite general, and
that many previously used quality functions actually fit in this class. We will now show that
it is possible to maximize any additive quality function over the set of partitions Π with a
simple recursive approach.

Lemma 1. Given an additive quality function Q and a dendrogram in which the set C has
children C1, ..., Ck, the partition Pmax ∈ ΠC that maximizes Q is either {C} or P1 ∪ ... ∪ Pk

where Pi ∈ ΠCi maximizes Q over ΠCi and Q(Pmax) = max
P∈ΠC

Q(P) = max(q(C),
∑

i

Q(Pi)).

Proof. Suppose that the partition Pmax ∈ ΠC maximizing Q is not {C}. Then it induces a
sub-partition Pi ∈ ΠCi in each of its children Ci such that Pmax = ∪iPi. Now suppose there
exists P ′i ∈ ΠCi such that Q(P ′i) > Q(Pi). Then the sub-partition P ′max = P1∪...∪P ′i∪. . .∪Pk

will satisfy, thanks to additivity, Q(P ′max) > Q(Pmax), which is impossible. ut

Theorem 1. Given an additive quality function Q and a dendrogram, it is possible to find
the partition P ∈ Π that maximizes Q with O(n) evaluations of function q. This is achieved
by function FindBestPartition.

Proof. Lemma 1 guarantees that the recursive function FindBestPartition finds the partition
maximizing Q over Π when called on the largest set of vertices V . The function is called
only once on each node of the dendrogram, thus the total number of calls (and thus the total
number of evaluations of the elementary quality function q) is |S| ≤ 2n. ut

Function FindBestPartition(C)
foreach child Ci of C do

(Qi,Pi) ← FindBestPartition(Ci)
end
if C has no child or q(C) >

∑
i Qi then

return q(C), {C}
else

return
∑

i Qi,∪iPi

Let us note moreover that some quality functions allow optimizations concerning the
computation of the q(C): for example it is possible to compute efficiently q(Ci ∪ Cj) from the
values of q(Ci) and q(Cj) for the modularity [3] and for the random walk quality function [15,
14].

3 Multi-scale community structure detection

Even if most community detection algorithms find hierarchical community structures, they
generally ouptput only one partition (like in Section 2). However, communities often appear

4

at different scales in complex networks. To overcome this limitation, we will propose here
multi-scale quality functions which work at different scales. We will then propose a method
to determine the most relevant scales, highlighting meaningful communities.

3.1 Multi-scale quality functions

We will consider in this section a scale factor 0 ≤ α ≤ 1 going from microscopic to macro-
scopic scales: α = 0 corresponds to smallest communities with only one vertex and α = 1
corresponds to the largest community containing all the vertices. We will define multi-scale
quality functions Qα and the partitions Pα maximizing them should be consistent with the
scale factor, which is captured by the following definition.

Definition 2. Consider a family of quality functions (Qα)0≤α≤1, and denote by Pα the par-
tition in Π maximizing Qα. Then (Qα)0≤α≤1 are multi-scale quality functions if

α1 ≤ α2 ⇒ Pα1 � Pα2 with Pα=0 = {{v}|v ∈ V } and Pα=1 = {V }

where Pα1 � Pα2 iff Pα1 is a refinement of Pα2, i.e. the sets of Pα1 are included in those of
Pα2: for all C1 ∈ Pα1, there exists C2 ∈ Pα2 such that C1 ⊆ C2

Note that for any α, Qα is a quality function, and so the notion of additivity (Definition 1)
applies. We propose now a general class of additive multi-scale quality functions.

Theorem 2. Let us consider a function h over the parts of V defined by a given dendrogram,
such that h(Ci∪Cj) ≥ h(Ci)+h(Cj): h is larger in macroscopic scales. Likewise, let us consider
l such that l(Ci∪Cj) ≤ l(Ci)+l(Cj): l is larger in microscopic scales. Then functions Qα defined
by:

Qα(P) =
∑
C∈P

qα(C) with qα(C) = αh(C) + (1− α)l(C)

are additive multi-scale quality functions.

Proof. Suppose that α1 < α2 but Pα1 � Pα2 . Then there exist C ∈ Pα1 and C1, . . . , Ck ∈
Pα2 such that C = C1 ∪ . . . ∪ Ck. We have: qα1(C) = α1h(C) + (1 − α1)l(C) = qα2(C) +
(α1 − α2)h(C) + (α2 − α1)l(C). But Pα2 (containing C1, . . . , Ck) maximizes Qα2 , therefore:
qα2(C) ≤ qα2(C1) + . . . + qα2(Ck). Moreover h and l satisfy: h(C) ≥ h(C1) + . . . + h(Ck) and
l(C) ≤ l(C1) + . . . + l(Ck). Finally with the fact that α1 < α2 we obtain: qα1(C) ≤ qα2(C1) +
. . . + qα2(Ck) + (α1 − α2)(h(C1) + . . . + h(Ck)) + (α2 − α1)(l(C1) + . . . + l(Ck)). We recognize
the inequality qα1(C) ≤ qα1(C1) + . . . + qα1(Ck) which is in contradiction with the fact that
Pα1 maximizes Qα1 . This proves the main property of Definition 2.
Then the additivity is immediate and it is simple to check that Pα=0 = {{v}|v ∈ V } and
Pα=1 = {V } thanks to the inequalities satisfied by h and l. ut

This theorem makes it possible to create an additive multi-scale quality function from
two elementary functions. These two functions must have opposite growing behavior with
community sizes and they also have to capture expected properties of communities. We now
propose suitable multi-scale quality functions which generalize those of Section 2 (the original
quality functions are obtained back as a particular case for α = 1

2).

5

The multi-scale modularity. We generalize the modularity by introducing the scale factor α
in its definition:

QM
α (P) =

∑
C∈P

αe(C)− (1− α)a(C)2

We check that the properties of Theorem 2 are satisfied to ensure that QM
α is an additive multi-

scale quality function. We consider hM (C) = e(C) the fraction of internal edges of community C
and lM (C) = −a(C)2 using the fraction of edges bound to community C. We have hM (Ci∪Cj) ≥
hM (Ci) + hM (Cj) because e(Ci ∪ Cj) = e(Ci) + e(Cj) + (fraction of edges between Ci and Cj).
And lM (Ci ∪ Cj) ≤ lM (Ci) + lM (Cj) because a(Ci ∪ Cj) = a(Ci) + a(Cj) and thus lM (Ci) +
lM (Cj)− lM (Ci ∪ Cj) = 2a(Ci)a(Cj).

The multi-scale performance. It is defined in the same manner by:

QP
α (P) =

α|{{u, v} ∈ E, C(u) = C(v)}|+ (1− α)|{{u, v} /∈ E, C(u) 6= C(v)}|
1
2n(n− 1)

We use hP (C) = 1
n(n−1)

∑
u∈C |{v ∈ C, {u, v} ∈ E}| and lP (C) = 1

n(n−1)

∑
u∈C |{v /∈ C, {u, v} /∈

E}|. The two inequalities required by Theorem 2 are easily verified if we remark that hP (C)
counts the number of edges inside C and lP (C) counts the number non existing edges between
vertices of C and other vertices.

A multi-scale similarity based quality function. Using the same idea we can generalize the third
quality function based on similarity measurement dij between vertices. However, the quantity
σ(C) measuring community homogeneity must also satisfy σ(Ci ∪ Cj) ≥ σ(Ci) + σ(Cj), which
is the case for Euclidean distances.

QS
α(P) = −αc(P)− (1− α)

∑
C∈P

σ(C)
σmax

hS(C) = − 1
n trivially satisfies the inequality of Theorem 2. The other inequality satisfied by

lS(C) = − σ(C)
σmax

comes from the restriction on d pointed out above.

3.2 Finding the best partition for every scale

A multi-scale quality function Qα allows us to find a partition Pα for any scale factor 0 ≤
α ≤ 1. We will show in this section how to compute efficiently all these partitions for the
general class of multi-scale quality functions defined in Theorem 2. The order between the
Pα (Definition 2 indicates that α1 ≤ α2 ⇒ Pα1 � Pα2) implies that the total number of
different partitions Pα is at most n. Indeed, each partition is obtained from the previous one
by splitting at least one community. Therefore the number of communities of the kth partition
is at least k. The number of communities of each partition being less than n (the number of
vertices) we cannot have more than n different partitions Pα.

To determine all the partitions Pα, we only need to determine the list of the particu-
lar scale factors αi at which Pα changes (split of a community into sub-communities). The
corresponding modifications induce a new hierarchy into the community structure: the com-
munity splits can be ordered by scale factors αi at which they occur. The dendrogram can
be reordered with this new hierarchy as illustrated in Figure 1c. This provides more accurate
information on community scales and improves comparison between them.

6

For each partition P, the function Qα(P) = l(P) + (h(P) − l(P))α can be seen as an
affine function of the parameter α. Therefore, finding all the best partitions Pα is equivalent
to finding the function QΠ

max(α) = Qα(Pα) defined as follows.

Definition 3. The piecewise affine function QΠC
max(α) maximizes Qα(P) over all possible par-

titions P ∈ ΠC:
QΠC

max(α) = max
P∈ΠC

Qα(P)

Theorem 3. Given additive multi-scale quality functions Qα satisfying Theorem 2 and a
dendrogram, it is possible to compute QΠ

max(α) by making at most O(n) evaluations of the
elementary quality function qα. The additional average complexity is O(n

√
n) for an arbitrary

dendrogram, it is O(n log(n)) for balanced ones and the worst case is O(n2). This is achieved
by the function FindMultiscalePartitions.

Proof. For a given α, and for a community C having children C1, . . . , Ck in the dendrogram,
Lemma 1 indicates that max

P∈ΠC
Qα(P) = max(qα(C),

∑
i max
P∈ΠCi

Qα(P)). This equality holds for

any α and thus we deduce QΠC
max(α) = max(qα(C),

∑
i Q

ΠCi
max(α)). This proves the corectness of

the recursive function FindMultiscalePartitions that computes QΠC
max by manipulating piece-

wise affine functions. QΠ
max(α) is obtained for parameter C = V .

The function is recursively called exactly once on each node of the dendrogram, leading
to O(n) evaluations of the elementary quality function qα. Each call also evaluates a sum and
a maximum operation on piecewise affine functions encoded by the list of their particular
points (αi, Q

ΠCi
max(αi)). These operations are done in time linear in the size of input piecewise

functions, and the sum of their sizes is at most |C|. Therefore this additional complexity is
represented by the sum over all the nodes of the dendrogram of operations in O(|C|). We can
notice that this sum is nothing else than the path length of the hierarchical tree structure of
community. Classical analysis shows that the path length is between n log(n) and n2 with an
average value (over all trees of size n) in O(n

√
n) [18]. ut

Function FindMultiscalePartitions(C)
foreach child Ci of C do

Q
ΠCi
max ← FindMultiscalePartitions(Ci);

end
if C has no child then

return α 7→ qα(C)
else

return α 7→ max(qα(C),
∑

i Q
ΠCi
max)

During the computation, we can keep in memory the communities Ci that are split at
each scale factor αi. This provides all necessary information to know at which scale factor α
each community appears and disappears from the partitions Pα. This also makes it possible
to build the reorganized dendrogram and all partitions Pα (see Figure 1c).

If we compare the complexity of this post-processing algorithm to those of the known
community detection algorithms, we can deduce that it may be integrated after almost any

7

of them without changing their overall complexity. Moreover, hierarchical structures obtained
from real cases tend to be balanced [3], which is the most favorable case for our complexity.

3.3 A notion of scale relevance

We showed that one can obtain all best partitions Pα for any scale factor α. However all these
partitions may not have the same relevance in term of community structure. We will provide
in this section a method to estimate the relevance of these partitions and to retrieve the most
meaningful scale factors at which clear community structures appear.

The algorithm of Section 3.2 allows us to know when each community C appears and
disappears from the partitions Pα. Let αmin(C) and αmax(C) be these two scale factors:
C ∈ Pα for αmin(C) < α < αmax(C). One may consider that the most relevant communities
will be present for wide ranges of scale factors. We use this to measure the relevance of a
community C by αmax(C)−αmin(C) and the best scale representing C as α = αmax(C)−αmin(C)

2 .
These two notions are captured by the following definition.

Definition 4. We define the relevance function Rα(C) of a community C at scale α by:

Rα(C) =
αmax(C)− αmin(C)

2
+

2(αmax(C)− α)(α− αmin(C))
αmax(C)− αmin(C)

This leads to the global relevance function R(α) =
1
n

∑
C∈Pα

|C|Rα(C).

Rα(C) is a quadratic function of α. Its maximum is R(αmax(C)−αmin(C)
2) = αmax(C) −

αmin(C) and R(αmin(C)) = R(αmax(C)) = αmax(C)−αmin(C)
2 . It may be used for determining

the scale factors corresponding to relevant community structures. We can use it to find the
best scale α which maximizes R(α), but we can also focus on other local maxima of R(α)
corresponding to other interesting scales. This method allows us to determine several relevant
scales and thus several relevant partitions (see Figure 1c for an example).

The computation of R(α) and its maxima can be done in O(n). R(α) is a quadratic
function that can be written as R(α) = Aα2 + Bα + C between each specific αi (the αi

correspond to splits of communities in the hierarchy given by partitions Pα). At each split, the
coefficients A,B and C are modified according to the coefficients of Rα(C) of the corresponding
communities. The previous algorithm gives the list of these splits, which allows to compute
coefficients A,B and C by updating them at each αi. Each community leads to two updates (in
constant time) of the coefficients (one when it appears at αmax(C) and one when it disappears
at αmin(C)), thus the overall complexity is O(n).

4 Experimental evaluation

In this section we evaluate and compare the performances of the different methods and qual-
ity functions presented in this paper. Comparing community detection results is a difficult
task because one needs some test graphs whose community structure is already known. A
classical approach is to use randomly generated graphs with communities. We will compare
the partitions obtained by post-processing the results of the same agglomerative algorithm
[15, 14] on a large set of such graphs.

8

We generate test graphs according to the following parameters: number of vertices n,
number of communities c, average internal and external 2 degrees din and dout. We divide the
n vertices into c equal-sized sets then we draw each possible edge with probabilities pin or
pout chosen according to din and dout. We evaluate found partitions by comparing them to
the original generated partition. To achieve this, we use the Rand index corrected by Hubert
and Arabie [17, 10] which evaluates the similarities between two partitions. The Rand index
I(Pi,Pj) is the ratio of pairs of vertices correlated by the partitions Pi and Pj (two vertices
are correlated by the partitions Pi and Pj if they are classified in the same community or in
different communities in the two partitions). The expected value of I for a random partition
is not zero. To avoid this, Hubert and Arabie proposed a corrected index that is also more
sensitive: I ′ = I−Iexp

Imax−Iexp
where Iexp is the expected value of I for two random partitions with

the same community size as Pi and Pj .
We will compare the following approaches: Classical Modularity (CM) maximizes QM over

P0, . . . ,Pc; Best Modularity (BM) maximizes QM over Π; and Multi-scale Modularity (MM)
maximizes QM

α over Π for the most relevant scale factor α given by R(α). Similarly, we define
Best Performance (BP) and Multi-scale Performance (MP) using QP and Best Similarity
(BS) and Multi-scale Similarity (MS) using QS .

The first test considers a set of 25 000 graphs with different sizes (100 ≤ n ≤ 10000),
different numbers of communities, different internal degrees 4 ≤ din ≤ 10 and external degrees
such that the expected modularity of the reference partition satisfies 0.2 ≤ QM (Pref) ≤ 0.6.
The results (Figure 2) show that the performance QP is not very well suited for community
detection in sparse networks because it gives too much importance to non-existing edges. We
may also notice that the similarity based quality function QS does not produce satisfying
results without considering its multi-scale version QS

α. And finally we see that the classical
and the best modularity methods produce good results that are improved by the multi-scale
approach.

The two next experiments show advantages of the multi-scale quality functions. First,
we will test their ability to find communities at any scale by considering different sizes of
communities. We generated a set of graphs with n = 1000 vertices, the same internal degrees
din = 3 and the same expected modularity QM

exp = 0.3, but they differ in their number of
communities 2 ≤ c ≤ 100. The results (Figure 3) show that multi-scale approaches (MM
and MS) find the good partition for any number and size of communities while CM and BM
approaches have difficulties in finding small communities.

It is interesting to compare the value of modularity found by the different approaches.
Of course the BM method obtains the largest value, but all other approaches find partitions
that are more similar to the reference partition. Moreover, it shows that it is possible to find
a bad partition (that does not represent the correct scale) with a larger modularity than
the reference partition. This disadvantage of the modularity is addressed by the multi-scale
modularity proposed in this paper.

Finally we generated graphs with 1000 vertices and two community scales: vertices are
divided into 10 communities that are themselves divided into 10 communities. This defines a
macroscopic and a microscopic partition. Edges are randomly drawn in order to obtain three
fixed average degrees dmicro

in , dmacro
in and dout chosen between 2 and 6. We considered the

two best scale factors indicated by the relevance function R(α) and compared the associated
partitions to the two generated partitions. The results (Figure 4) show that the multi-scale

2 In this paper, for a given graph divided into communities, internal edges are the ones linking two vertices
in a same community; external edges are the ones linking vertices in two different communities.

9

quality functions make it possible to find distinct partitions corresponding to different scales.
In comparison the BM method, that only find one partition, only detects the macroscopic
partition.

5 Conclusion

We proposed in this paper methods improving the results of any community detection al-
gorithm finding a hierarchical structure of communities. First, we showed how to optimize
additive quality functions over a larger set of partitions than classical approaches. Moreover,
we proposed multi-scale quality functions that work at different scales and make it possible
to find more than only one relevant partition. Experiments have shown that these meth-
ods provide a significant improvement over classical approaches, especially in detecting small
communities or communities that appear at different scales.

Moreover, scale factors associated with each community enable to reorder the dendro-
gram (Figure 1c), and we are convinced that they could also be integrated in a multi-scale
visualization tool of complex networks based on community decomposition.

Acknowledgments

We thank Clémence Magnien for useful advice and helpful comments on preliminary ver-
sions. This work has been supported in part by the French national projects PERSI (Pro-
gramme d’Étude des Réseaux Sociaux de l’Internet) and AGRI (Analyse des Grands Réseaux
d’Interactions).

References

1. R. Albert and A.-L. Barabási. Statistical mechanics of complex networks. Reviews of Modern Physics,
74(1):47, 2002.

2. Ulrik Brandes and Thomas Erlebach, editors. Network Analysis: Methodological Foundations, volume 3418
of Lecture Notes in Computer Science. Springer, 2005.

3. Aaron Clauset, M. E. J. Newman, and Cristopher Moore. Finding community structure in very large
networks. Physical Review E, 70(6):066111, 2004.

4. L. Donetti and M. A. Muñoz. Detecting network communities: a new systematic and efficient algorithm.
Journal of Statistical Mechanics, 2004(10):10012, 2004.

5. S.N. Dorogovtsev and J.F.F. Mendes. Evolution of Networks: From Biological Nets to the Internet and
WWW. Oxford University Press, Oxford, 2003.

6. Jordi Duch and Alex Arenas. Community detection in complex networks using extremal optimization.
Physical Review E (Statistical, Nonlinear, and Soft Matter Physics), 72(2):027104, 2005.

7. Santo Fortunato, Vito Latora, and Massimo Marchiori. Method to find community structures based on
information centrality. Physical Review E, 70(5):056104, 2004.

8. Roger Guimera and Luis A. Nunes Amaral. Functional cartography of complex metabolic networks.
Nature, 433:895–900, 2005.

9. Erez Hartuv and Ron Shamir. A clustering algorithm based on graph connectivity. Information Processing
Letters, 76(4-6):175–181, 2000.

10. L. Hubert and P. Arabie. Comparing partitions. Journal of Classification, 2:193–218, 1985.
11. R. Kannan, S. Vempala, and A. Veta. On clusterings: good, bad and spectral. In Proceedings of the 41st

Annual Symposium on Foundations of Computer Science (FOCS’00), page 367, Washington, DC, USA,
2000. IEEE Computer Society.

12. M. E. J. Newman. The structure and function of complex networks. SIAM REVIEW, 45:167, 2003.
13. M. E. J. Newman and M. Girvan. Finding and evaluating community structure in networks. Physical

Review E, 69(2):026113, 2004.
14. Pascal Pons and Matthieu Latapy. Computing communities in large networks using random walks. to

appear in Journal of Graph Algorithms and Applications.

10

15. Pascal Pons and Matthieu Latapy. Computing communities in large networks using random walks. In Pro-
ceedings of the 20th International Symposium on Computer and Information Sciences (ISCIS’05), volume
3733 of Lecture Notes in Computer Science, pages 284–293, Istanbul, Turkey, October 2005. Springer.

16. F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi. Defining and identifying communities in
networks. PNAS, 101(9):2658–2663, 2004.

17. W.M. Rand. Objective criteria for the evaluation of clustering methods. Journal of the American Statistical
association, 66:846–850, 1971.

18. Robert Sedgewick and Philippe Flajolet. An Introduction to the Analysis of Algorithms. Addison-Wesley
Publishing Company, 1996.

19. S. H. Strogatz. Exploring complex networks. Nature, 410:268–276, March 2001.
20. Stijn van Dongen. Graph Clustering by Flow Simulation. PhD thesis, University of Utrecht, May 2000.
21. Haijun Zhou and Reinhard Lipowsky. Network Brownian motion: A new method to measure vertex-vertex

proximity and to identify communities and subcommunities. In International Conference on Computational
Science, pages 1062–1069, 2004.

11

Fig. 1. (a) Example graph with a multi-scale community structure. (b) Hierarchical com-
munity structure (dendrogram) found by the Walktrap algorithm [15, 14]: the heights of the
nodes represent the steps of the algorithm. The classical approach only considers partitions
given by straight horizontal cuts on this dendrogram: here a partition into 5 communities
maximizes the modularity QM = 0.55. (c) Reordered dendrogram according the multi-scale
quality function QM

α . Horizontal cuts show the best partition Pα for any scale factor α. The
maximal modularity QM = 0.57 (obtained for α = 1

2) improves the classical approach by
finding a better partition in the dendrogram. In addition, the relevance function R(α) in-
dicates two meaningful scale factors (α = 0.42 and α = 0.73) corresponding to a partition
into 6 communities and a partition into 3 communities (outlined in dark blue and light blue
respectively). Notice moreover that these partitions are obtained for wide ranges of values of
α, which may be seen as an indication of the fact that they are very relevant.

12

 0

 0.2

 0.4

 0.6

 0.8

 1

10000	0.2 3000 1000 300 100S
im

ila
rit

y
w

ith
 th

e
re

fe
re

nc
e

pa
rt

iti
on

 (
co

rr
ec

te
d

R
an

d
in

de
x)

Size (number of vertices)

MS Multi-scale Similarity
BS Best Similarity
MP Multi-scale Performance
BP Best Performance

0.60.50.40.3
 0

 0.2

 0.4

 0.6

 0.8

 1

Expected modularity QM

MM Multi-scale Modularity
BM Best Modularity
CM Classical Modularity

Fig. 2. Performance of the different methods measured by the similarity between the partition
found and the actual generated partition. Left: influence of the size of the graph. Right:
influence of the modularity of the reference partition.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

D
is

ta
nc

e
fr

om
 th

e
re

fe
re

nc
e

pa
rt

iti
on

MM Multi-scale Modularity
BM Best Modularity
CM Classical Modularity
MS Multi-scale Similarity

 0.29

 0.3

 0.31

 0 20 40 60 80 100

M
od

ul
ar

ity
 Q

^M

Number of communities

MM Multi-scale Modularity
BM Best Modularity
CM Classical Modularity
MS Multi-scale Similarity
reference partition

Fig. 3. Influence of the number of communities on generated graphs with n = 1000 vertices.
Top: similarity between the partition found and the actual generated partition. Bottom:
modularity QM of the partition found and of the reference partition.

13

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 4 5 6 7 8 9 10 11 12

S
im

ila
rit

y
w

ith
 th

e
re

fe
re

nc
e

pa
rt

iti
on

Total internal degree

MS macro
BM macro
MM macro
MS micro
BM micro
MM micro

Fig. 4. Detection of communities at two different scales: distance from the macroscopic and
the microscopic partitions in function of the total internal degree din = dmicro

in + dmacro
in .

14

