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Abstract—Understanding the spread of information on com-
plex networks is a key issue from a theoretical and applied
perspective. Despite the effort in developing theoretical models
for this phenomenon, gauging them with large-scale real-world
data remains an important challenge due to the scarcity of
open, extensive and detailed data. In this paper, we explain
how traces of peer-to-peer file sharing may be used to this
goal. We also perform simulations to assess the relevance of
the standard SIR model to mimic key properties of spreading
cascade. We examine the impact of the network topology on
observed properties and finally turn to the evaluation of two
heterogeneous versions of the SIR model. We conclude that
all the models tested failed to reproduce key properties of
such cascades: typically real spreading cascades are relatively
“elongated” compared to simulated ones. We have also observed
some interesting similarities common to all SIR models tested.

I. INTRODUCTION

Diffusion phenomena in complex networks – such as
the spread of virus on contact networks, gossip on social
networks and files in peer-to-peer (P2P) networks – have
spawned an increasing interest in recent years. The boost
of computer networks and online social network platforms
offers data and new insights on these phenomena in large
scale networks; the possibility to validate and refine current
models might lead to breakthroughs in the field.

Although large scale diffusion phenomena have always
attracted considerable interest, it has been historically
challenging to obtain open, extensive and detailed real-world
data at this level. Despite this obstacle, diffusion models
emerged, notably in epidemiology. The early models, both
discrete and continuous (see [1], [2] for a survey), focused
primarily on macroscopic aspects of diffusion – such as the
evolution of the number of infected individuals in a population
– overlooking the microscopic dynamic of the epidemic – i.e.,
how (by whom) individuals become infected. The advent of
network analysis in various contexts has pushed for a more
detailed description of the diffusion process. Indeed, models
based on the detailed interactions of agents on a network
have blossomed in sociology [3], computer science [4] and
economics [5], among others. New epidemic models inspired
by the classical approaches featuring a detailed dynamic
description in the context of networks also appeared (see [6],

[7] for a survey). In particular the network version of the SIR
family of models has established itself as reference model in
the study of information diffusion [8], [9], [10], [11], [12].

In this context, assessing the pertinence of such models to
describe real-world data is critical. In order to validate this
model a comprehensive empirical spreading trace, consisting
of (1) detailed chronological data of who transmitted the
information to whom and (2) data describing the underlying
network on which the diffusion process takes place. Indeed,
the network version of the SIR model (henceforth called
simply SIR model) is based on local rules of transmission
which take into account the network topology. In large
epidemic bursts the available data often provides the
evolution of large aggregate quantity, such as the number
of touched individuals, but rarely uncover the local trail of
the epidemic. Conversely, other empirical studies feature
transmission events, but lack complete information of the
underlying network structure on which the diffusion takes
place [13], [14]. This work analyses the relevance of the
SIR model for real-world diffusions, using data obtained
measuring the activity on a peer-to-peer file sharing network.
This rich dataset allows one to reconstruct both the underlying
network and the detailed diffusion trail at a remarkable scale.

We begin with a description of our dataset and framework
in section II. In section III we define the spreading cascade.
Next, in section IV, we simulate the spreading of files as
a standard SIR process and confront it with the observed
spreading; we also investigate the interplay between this
process and structural properties of the underlying network
where the spreading takes place. In section V we examine
the spreading pattern when we modify the SIR model to
account for heterogeneity in the behavior of the peers and in
the popularity of files. We conclude the paper with of future
work perspectives.

II. DATASET AND FRAMEWORK

The data used in this study comes from file sharing in an
eDonkey server, obtained from a measurement of six hours of
activity (akin to [15]). In this setting, peers query the eDonkey



Fig. 1. Interest graph as a projection of the bipartite graph of peers and files
contructed from the trace D.

server indexing files and for each file they get a list of available
peers in the network possessing the requested file. Next, peers
contact potential providers directly and transmission between
them ensues. This dataset is a collection of answers to these
queries, encoded as 4-tuples of integers in the following
format: (t, P, C, F ), where capital letters represent unique ids
(e.g. in Fig. 2). Each tuple accounts for a query made at time
t of the file F by the peer C, satisfied by the peer P – that is,
P has provided F to the peer C at time t. Let D be the
set of all recorded tuples, P the set of all peers in these
tuples and F the set of all files exchanged. In our dataset
we have |P| = 1 908 500 peers, |F| = 801 280 files and
|D| = 22 944 800 file transfers.

A. Underlying network

The trace D naturally induces a relationship between files
and peers (who request or provide them), which we encode in
a bipartite graph B = (P,F ,A) on the disjoint sets of peers
P and F files respectively. Let (t, P,X, F ) ∈ D be a recorded
transmission of the file F by the peer P to some peer X at
some time t, which we denote simply by (·, P, ·, F ). Likewise,
let (·, ·, P, F ) ∈ D be a recorded transmission of the file F
to the peer P , provided by some peer at some time instant.
Hence:

A = {(P, F ) ∈ P × F : (·, P, ·, F ) ∈ D ∨ (·, ·, P, F ) ∈ D}

To study the diffusion, it is necessary to define the
underlying network on which spreading takes place. Focusing
on information content diffusion among peers, it is natural
to consider the interest graph in which each node represents
a peer and each edge joining two peers stand for common
interest. Interests connecting peers may include broad subjects
such as open source software, folk rock or French literature
or narrow ones such as movies by Quentin Tarantino,
a particular computer game or pictures of Beijing. It is
reasonable to suppose that peers store and share content
related to their interests and, likewise, peers will search for
content matching their interests. Hence the diffusion of files
among peers takes place on the interest graph and occurs
from neighbor to neighbor. Indeed, if a peer P provides
a file F (corresponding to a music album for example) to
another peer P ′ then there is link between them in the interest

Fig. 2. Trace log example with corresponding spreading cascade in black
and underlying network in light gray.

graph, since both are interested in the same content, namely F .

It is beyond doubt extremely difficult in a large scale
interaction network to know precisely whether any two in-
dividuals have a common interest. Nonetheless, it is possible
to approximate this graph using the data in D: the inferred
interest graph is given by the projection G = (P, E) of B on
P , connecting the peers who belong to the neighborhood of a
common file in the bipartite graph, for each file:

E = {(P, P ′) ∈ P×P : ∃F ∈ F , (P, F ) ∈ A ∧ (P ′, F ) ∈ A}

See example in Fig. 1. For the sake of readability the inferred
interest graph will be henceforth called simply interest graph.

B. Observed network structure

We begin examining properties of the bipartite graph B
constructed from the P2P diffusion trace. In order to estimate
the typical number of interested peers per file we have
calculated the median degree of the files in the bipartite
graph, 5, and the average degree, 14.73, with standard
deviation of 34.74. Likewise, we have calculated the same
statistics for the peers, to estimate the number of files
commonly shared by peers: its median degree in the bipartite
graph is 3 and the average degree is 6.19, with corresponding
standard deviation of 12.66. The degree distribution of both
peers and files is however heterogeneous (Fig. 3b) and mostly
concentrated on small values; all degree values for peers and
files remain below 104.

The interest graph obtained from the observed bipartite
graph (as explained above and in Fig. 1) has a single
giant component containing almost all nodes (99.99%) and
density 2.62 × 10−4. In Fig. 3a we have plotted the degree
distribution for the peers: considering the set of all peers, the
median degree is 118 and the mean value is 500.11, with
corresponding standard deviation of 1271.42. We proceed to
a finer analysis of the degree distribution, grouping peers in
categories (Fig. 3a). Let us consider first the set of clients
C ∈ P such that (·, ·, C, ·) ∈ D: i.e., peers having requested
files during our measurements. Their degree distribution
superposes the degree distribution of all nodes. This is due
to the fact that 99.63% of peers in our observations have
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(c) Complementary cumulative distribution of the
number of initial providers in the spreading cascades

Fig. 3. Properties of the underlying network and observed spreading cascades

requested at least one file, so the clients degree distribution
is essentially the global degree distribution. A much more
restrictive category is the set of providers P such that
(·, P, ·, ·) ∈ D, i.e., peers having supplied files during our
measurements. They account for 4.33% of the peers in
P . Their degree distribution has a similar shape, but it is
concentrated on larger values, indicated by a median of 1821
and an average degree of 2906.54 – with corresponding
standard deviation of 3471.80. The last curve, superposing the
curve corresponding to the providers, represents the degree
distribution of a particular subset of providers called initial
providers, which will be detailed in the next section.

We close this section with a brief summary of our dataset.
Using the framework introduced, we were able to reconstruct
the interest graph of the peers, where the spreading of files
takes place. This graph connects essentially all peers, which
can be grouped in two categories: providers and clients. Most
peers in our observations are clients, but only a small fraction
supply files: this revels a high proportion of free-riders
(peers obtain files and do not share back) in the P2P-network
observed. Furthermore, there is a sharp distinction between
clients and providers in terms of their degree distribution.

III. SPREADING IN OUR DATA

In this work we analyze the spreading cascade representing
the diffusion of each file in the P2P network. For a file F , the
spreading cascade is a directed graph featuring the set PF

of peers who have participated in the spread of F (as clients
and/or providers) and links P → C, connecting each client
C with the first peer(s) who provided F to it. More formally,
let τF (C) = inf{t : (t, ·, C, F ) ∈ D} be the first instant C
obtained F and let the directed graph KF = (PF ,LF ) be the
spreading cascade of F , with

PF = {P ∈ P : (P, F ) ∈ A}

LF = ∪C∈PF
{(P,C) ∈ PF × PF : (τF (C), P, C, F ) ∈ D}

A client requesting a file may receive a response from
potentially several providers simultaneously, which implies
that nodes in the cascade graph not only have multiple
outgoing links, but also multiple incoming links in general.
The causality induced by the fact that we only consider
the links corresponding to the first time a node received F
prevents the appearance of cycles. Hence the cascade is in
fact a directed acyclic graph (DAG).

The first key property encoded in the spreading cascade
of a given file F is the number of nodes who possess it at
the end of the observed period, which is given by the size of
the cascade |PF |. We also explore two other key topological
properties of the cascade, namely its depth and number of
links. The former is defined as the length of the longest path
on the cascade and captures the maximum number of hops
from peer to peer that the file has undergo before it was
relayed from a provider to a client. The number of links,
given by |LF |, combined with the size of the cascade gives
information on the sharing pattern of the network. An example
of observed trace and constructed spreading cascade is given
in Fig. 2: the spreading cascade has size 7, depth 3 and 6 links.

Another relevant spreading data concerns the initial
providers for each file F , namely the set of peers that
possessed it prior to any transfer activity on the observed trace.
These nodes are the origin of the spreading cascade, triggering
the diffusion of the file F . This information can also be in-
ferred from the request log and be determined in the following
way. Let CF (t) = {C ∈ P : (t′, ·, C, F ) ∈ D, t′ < t} be the
set of peers who requested F prior to t. We define the set of
initial providers of F as the set of peers P who have provided
F at some time t, without having obtained it before t from
another peer in the network:

IF = {P ∈ P : (t, P, ·, F ) ∈ D, P /∈ CF (t)}

Plotting the complementary cumulative distribution of
the number of initial providers for the spreading cascades



(Fig. 3c) we obtain an interesting curve, revealing a scale-
free distribution. This means that although most spreading
cascades in our observation have few initial providers, there
is a non negligible fraction of cascades with a large number
of initial providers.

IV. SIMPLE SIR MODEL

As mentioned in the introduction, we have decided to
investigate the file spreading in the light of the simple SIR
model. In our setting, each file spreading corresponds to an
independent epidemic in the interest graph, in which each
node is in one of the following states: susceptible, infected
or non-interacting (sometimes denoted removed, hence the
acronym SIR). Susceptible nodes do not possess the file
and may receive it from an infected node, thus becoming
infected. Infected nodes, in turn, spread the file to each of
its neighbors, independently, with probability p and become
promptly non-interacting thereafter. Although non-interacting
nodes remain in this state, infected nodes may unsuccessfully
try to infect them sending the file.

Supposing the observed diffusion trace was the result of
such a simple SIR epidemic we may estimate the spreading
parameter p. Each neighbor-to-neighbor transmission trial can
be seen as a Bernoulli random variable, whose value is 1 in
case of success and 0 otherwise and whose expected value
is p. Assuming each trial is independent and the parameter
p is homogeneous for each P and F , we may estimate it
by the empirical proportion of successes over all trials. Since
each tuple in D accounts for a successful neighbor-to-neighbor
transmission, |D| is the number of successful trials for all
diffusion cascades. The total number of trials, in turn, is
given by the sum of the degrees of all nodes involved in
the spreading of each file. Hence, we obtain the following
estimate, with a 95% confidence interval p̂± 10−6:

p̂ = |D| /
∑
F∈F

∑
P∈PF

d(P ) = 1.063× 10−3

Since the simple SIR model depends upon a single pa-
rameter, namely the spreading probability p, we have fully
characterized it with the preceding estimation.

A. The underlying network influence

The goal of simulating the standard SIR model and com-
paring the simulated cascades with the observed ones is
primarily to assess how realistic this model would perform
on the interest graph, in terms of size, depth and number
of links of the spreading cascades. Secondly, we wish to
compare the results with simulations on random networks
to understand the role of the network topological structure
on the shape of the spreading cascades generated with the
SIR model. With this aim, we have considered the spreading
of files in a sequence of random networks derived from the
interest graph, with increasing topological complexity. More
precisely we begin considering an Erdös-Rényi (ER) random

graph with the same density of our interest graph, the simplest
random graph in our sequence. Then we have chosen a random
graph with the same density and degree distribution using
the Configuration Model (CM) approach [9]. Next we have
generated a Random Bipartite (RB) graph, with the same
density and degree distribution as our original bipartite graph
B of peers and files [16]. Compared to the interest graph, the
projection of this random bipartite graph has similar density,
degree distribution and clustering coefficient. In sum, for each
new element of this sequence of (uniformly chosen) random
graphs we introduce a new constraint to make it more realistic
– in the sense that its topological properties will be closer to
the interest graph.

B. File spreading simulation

Combining the network topology, the initial condition
information (the list of initial providers IF calculated for
each file F ) and the calibrated spreading parameter p̂ we can
proceed to the simulations for each underlying network: for
each F , we begin with the initial providers in an infected
state and the other nodes in a susceptible state. At each
step, infected nodes will infect each of its neighbors with
probability p̂, becoming non-interacting afterwards. The
epidemic continues as long as there are active infected nodes.

The first observation concerning the model simulation
is that the observed time (measured in seconds) has no
direct relation with the simulation time (number of steps).
Furthermore, our dataset corresponds to an observation in
a bounded window of time of six hours, so that we have
no reason to suppose that the file spreading cascades we
observe correspond to the whole spreading cascade of a file.
In other words, if we had measured a longer time window we
would likely observe bigger cascades (in terms of size and
depth) for the same files – due to, among other reasons, new
users who could eventually request the same files. This is
also true for our SIR model: we observe increasingly bigger
cascades as time increases. In fact performing unconstrained
simulations we have obtained a distribution of significantly
bigger cascades than the ones we have observed in the real
trace. Thus, in order to perform a suitable comparison with
the observed cascades, we have decided to hold one property
fixed and compare the other properties. More precisely for
each file we generate a simulated cascade with the same
size (resp. depth) as the corresponding observed cascade
and compare the depth (resp. size) and number of links.
In practice, for each file we simulate the SIR epidemic as
described earlier and halt it when it reaches the size (resp.
depth) of the corresponding observed cascade.

We have generated populations of simulated cascades for
each underlying network and constraint (on depth and size).
We have performed 801 280 file spreading simulations (one
for each file in F) for each network and have selected every
simulated file spreading cascade which attained the depth
(resp. size) of the real spreading cascade for the same file –
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(c) Depth of cascades with fixed size.
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(d) Number of links of cascades with fixed size. Curves corre-
sponding to the interest graph, RB and CM superposed.

Fig. 4. Simulation of file spreading on different underlying networks: complementary cumulative distribution of cascade properties

and have rejected the others for purpose of comparison. With
this procedure, each underlying network yields a different
population of file spreading cascades, since the rejected
cascades may be different in each case. However 93.80% of
the files have generated simulated cascades with the same
depth as the corresponding real cascades, for all networks.
Similarly, 85.64% of the files have generated simulated
cascades with the same size as the corresponding real
cascades, for all networks – except the ER network. Indeed,
only 21.76% of the files have generated the contemplated size
in the ER graph. Furthermore the properties of these simulated
cascades on the ER graph deviated significantly from the
properties of the cascades on the other graphs. Hence, in the
following analysis we do not include the simulations for the
ER graph. Rather, we focus on the properties of the of files
with comparable spreading cascade depth (resp. size) on all
networks but ER.

In Fig. 4a we plotted the complementary cumulative
distribution of the size of cascades with comparable depth.

We observe a divergence of the cascade size from the observed
cascades: simulated cascades are typically much bigger in
size for a given depth compared to real cascades. The range
of values in both categories is also striking: the biggest real
cascade is at least two orders of magnitude smaller than the
biggest simulated ones. Among the simulated cascades, there
is a remarkable matching in size values for the simulation
on the CM and the interest graph (curves are superposed). In
Fig. 4c we plot the complementary cumulative distribution of
the depth of cascades with fixed size. Real cascades feature a
much higher depth compared to simulations, holding cascade
size constant. In particular there is a cutoff on the cascade
depth for the simulations: we do not observe any cascade
depth bigger than 11 in the simulations. As for the number
of links, we have two interesting situations. If we fix the
depth (Fig. 4b) the number of links distribution resembles
closely the size distribution (Fig. 4a). This is not completely
surprising, since the two quantities are related. In this case we
observe a larger number of links for all simulations compared
to the number of links in the real cascades since the simulated



cascades itselves are bigger. If, in constrast, we fix the
cascade size to fit the observed cascades size (Fig. 4d), we
observe a typically smaller number of links. Combining these
observations on both plots we conclude that real spreading
cascades are denser than simulated ones, a clear qualitative
feature not captured by the simple SIR model. Finally we
note that most cascades are simple, featuring depth equal to
one and correspondingly small size.

To sum up, we have compared simple topological properties
of real spreading cascades and simulated cascades from a
calibrated SIR model, with comparable depth and size. We
have observed that simulated cascades are relatively “wider”
whereas real cascades are relatively “elongated”, that is,
real cascades have a smaller size per depth ratio. Moreover,
real cascades are typically denser than simulated ones. In
terms of interplay between underlying network structure and
the simple SIR spreading cascades, we have observed that
respecting the interest graph degree distribution was the only
property that caused a striking change in simulations behavior
on the considered random networks. Indeed we have observed
sharp qualitative dissimilarities between the simulations on
the ER graph (different degree distribution) and no sensible
dissimilarities between the simulations on the CM, RB and
the interest graphs.

V. HETEROGENEOUS SIR MODELS

In the previous section we have examined the adequacy of
the simple SIR model to generate verisimilar file spreading
cascades. We have also inspected the interplay between the
underlying network and the model simulating file spreading
in different networks. In this section we perform a comple-
mentary analysis, focusing on a single underlying network
and examining different extensions of the SIR model consid-
ered previously. In particular we consider two heterogeneous
versions of the SIR model, characterized by a distribution
of spreading probabilities, instead of a single homogeneous
parameter. The natural choice in this case for the underlying
network is the interest graph, which is the most complete and
realistic graph among the ones tested in the previous section.

A. File popularity

A first refinement of the simple SIR model consists in
introducing different spreading probabilities according to the
file being spread. The rationale in this case is to account for
different levels of popularity depending on the file. Exogenous
reasons – such as a movie release or the death of an an artist
– can change the supply and demand of a given file and
consequently alter its spreading probability. The knowledge
of the actual reasons that explain the heterogeneity in file
popularity are irrelevant to the characterization of this model,
if we know the spreading probabilities for each file, i.e.,
{p(F ) : F ∈ F}. An estimate of these probabilities, in
turn, can be obtained from the trace D if we suppose it was
generated by a process following this extended SIR model.
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Fig. 5. Heterogeneous spreading parameter distributions

Indeed, since each file spreading is independent of the others,
it is possible to estimate p(F ) for each F separately, with
the same method used to derive the homogeneous parameter.
Restricting the calculations to the spreading cascade of F ,
p̂(F ) will be given by the empirical proportion of successful
transmissions of F over all possible transmissions of F :

p̂(F ) = |{(·, ·, ·, F ) ∈ D}| /
∑

P∈PF

d(P )

In Fig. 5a we plot the distribution of the heterogeneous
spreading parameters depending on the files. The values of p̂
are concentrated on the range 10−5 to 10−2, indicating that
there is a considerable fraction of cascades with a significantly
different spreading regime (bigger than one order of magni-
tude). This distribution characterizes the extended SIR model
we use in the following simulations.

B. Peer behavior

A second possible refinement is motivated by the fact that
peers might have intrinsically distinct levels of “generosity”
regarding file sharing. Under this hypothesis we extend the
standard SIR model assigning an heterogeneous spreading
probability to each peer, regardless of which file it is sharing.
Thus, we do not need any other information but the spreading
probability distribution to characterize the model. In this
context altruistic peers, who typically spread files to a large
proportion of their neighbors, would feature a bigger spreading
probability compared to the homogeneous spreading probabil-
ity corresponding to the diffusion aggregates of all peers. By
the same token, the extreme case of free-riders would have
their spreading probability assigned to zero. Again we can
study transmissions as outcomes of Bernoulli trials to estimate
the spreading probabilities. Let FP = {F ∈ F : (P, F ) ∈ A}
be the files carried by the peer P ; for each such file the
number of transmission trials P could perform corresponds to
its degree in the interest graph, namely d(P ). Hence, to obtain
p̂(P ) for each peer P we divide the number of successful
transmissions of P to other peers (of any file carried by P )
over the total number of potential trials:

p̂(P ) =
|{(·, P, ·, ·) ∈ D}|
|FP | × d(P )
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Fig. 6. Simulation of file spreading on the interest graph with different SIR processes: complementary cumulative distribution of cascade properties

We have plotted the distribution of the positive spreading
probabilities estimates in this case (Fig. 5b). They account for
small fraction of all the peers, since the only peers who have
a positive spreading probability are those who provided a file
at least once – 4.33% cf. observations made in section II.
Conversely, a large fraction of the peers do not share the
file in this model. We observe a marked range of values,
which is significantly greater than the one calculated for the
homogeneous SIR.

C. File spreading simulation

Our aim is to generate simulated cascades following both
extensions of the SIR model presented – with heterogeneous
spreading probability depending on the files and on the peers
– and compare their properties with the simulated cascade
of the simple SIR model and the real observed cascades. In
this sense, we apply the same methodology of the previous
simulations: we fix the depth (resp. size) for the simulated
cascades and examine the other two properties – the idea is
to compare similar spreading cascades in terms of the chosen

property. As discussed previously, the great majority of the
cascades is simple, with depth equal to one and a small size.
Hence the simulated cascades corresponding to the simple
observed cascades will likely correspond in terms of depth,
size and number of links. For this reason, we have decided
in this section to focus on the spreading cascades with depth
greater than one.

The simulation results are plotted in Fig. 6: we have
plotted the complementary cumulative distributions of the
spreading cascade depth, size and number of links. Imposing
a constrain on the depth for the simulated cascades and
comparing their size (Fig. 6a) we observe the contrast
between the simulated and the real observed cascades with
the same depth: the former have a typically bigger size
compared to latter. What is remarkable, however, is the
agreement among all the simulated cascade distributions –
curves superposed in Fig. 6a. Next, if we fix the size for the
simulated cascades and examine their depth, we are faced
with the same qualitative similarity among simulated curves.



Indeed, the curves corresponding to the heterogeneous SIR
models also feature a cutoff in depth, failing to reproduce
the scale-free curve representing the depth of the observed
real cascades. Finally, the cascade links distribution plotted in
Fig. 6b and Fig. 6d reveals the pattern observed previously,
namely that the observed spreading cascades are typically
denser than corresponding simulated cascades.

Inspite of the improvements in the SIR model, introducing
an heterogeneous spreading parameter to account for different
profile of files (respectively peers), the simulations indicate
that this refinement does not change qualitatively the basic
properties of the simulated spreading cascades. Indeed we
observe a surprising agreement between the three SIR models
compared, notwithstanding the particularities of each model.

VI. CONCLUSION AND PERSPECTIVES

We have presented a large-scale dataset from a real-world
peer-to-peer network, featuring diffusion of files among peers.
We have proposed a framework to study this dataset which
allows us to obtain, simultaneously, the interest graph of
peers – where the diffusion of content takes place – and the
spreading cascade. Guided by simulations we have examined
spreading cascades generated by the simple SIR model
and have analyzed the interplay between this model and the
network topology. We concluded that simulated file spreadings
do not capture key qualitative properties of the observed
spreading cascades. Furthermore, in terms of the studied
properties, the simple SIR model generates similar cascades
on random networks having the same degree distribution as
the interest graph. Next we have focused on the spreading
of files on the interest graph and studied extended versions
of the SIR model featuring an heterogeneous spreading
parameter. Surprisingly enough, simulated cascades using
both extensions of the SIR model show similar properties
as the simple homogeneous SIR model – and thus, fail to
reproduce qualitative features of the observed cascades.

The SIR model is an attractive choice to model the
information spreading in complex networks: it is based
on classical epidemiological models, it is based upon few
assumptions and can be characterized with one parameter.
However, the results on this paper suggest that this model
might not be suited to describe file spreading in our
data. Furthermore, extensions of this epidemic model to
make it more realistic, featuring heterogeneous spreading
probabilities do not offer a better alternative in terms of
the properties we observed. At this point, we consider two
main exploration tracks. The first possibility consists in
constructing a weighted interest graph, which takes into
account the number of interactions (file exchanges) between
peers. In this case the same analysis may be performed and a
comparison with the results of this paper would be pertinent.
The second possibility is to contrast epidemiological models

to adoption/threshold models [8], [3].
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