
1

Telling apart social and random 

relationships in wireless networks

1

June 2012

Aline Carneiro Viana
Hipercom research team

Saclay

P.O.S.V. de Melo, A.A.F. Loureiro from Federal Univ. of Minas Gerais

M. Fiore, K. Jaffrès-Runser, F. Le Mouel from INSA Lyon



2

• New potential wireless and pervasive applications 

– Wireless Social networks, global sensing, content distribution

– Increasing volume of mobile data between 2010-2015

The smartphone phenomena

and the culture of the small screen…

=+

User-aided wireless networks/

Disruption-Tolerant networks
Smartphones have the 

potential to be::
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…involving. devices carried by humans

Real-world mobility scenarios create neither purely regular nor 

purely random connections among the entities composing the network

• Decision-Based Wireless Networks (DbWN)

– Have large number of vertices and edges that exhibit a pattern

– Communities are naturally formed, reflecting social decisions of entities

– Evolves according to semi-rational decisions of entities ≠ random networks

• Semi-rational decisions tend to be regular and to repeat themselves

After 4h After 1 day After 1 week
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Random events are always possible in humans routines

• But…

– …introduce significant amount of noise in predictable patterns

– …make the process of knowledge discovery in datasets a complex task

• Proposal: Random relationship classifier strategy (RECAST)

– Accurately identify random from social interactions (nodes wireless 
encounters) in large datasets

• Application scenarios:

– Recommendation systems 

– Forwarding strategies

– Ad-hoc message dissemination schemes (high coverage and limited number 
of messages)
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Considered real-world datasets

• [30] T. Henderson et al. “The changing usage of a mature campus-wide wireless network,” in Proc. of ACM 

MobiCom 2004. 

• [31] W. jen Hsu et al. “Impact: Investigation of mobile-user patterns across university campuses using wlan

trace analysis,” CoRR, vol. abs/cs/0508009, 2005.

• [32] A. Rojas et al. “Experimental validation of the random waypoint mobility model through a real world 

mobility trace for large geographical areas,” in Proc. of the 8th ACM MSWiM 2005.



7

Comparison with Random Graphs
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Temporal graph generation

• Time steps     = 1 day

• Event graph: 

• Time accumulative graph: 
•

•

• for     = 1 day and t = 2 weeks

= 1st day = 2nd day = 4th day= 3rd day

…

Difficult to 

extract any 

knowledge!!
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• 1st step: from                    generates its random version           [1]

– with the same number of nodes, edges, and empirical degree distribution

– assigns edges with probability 

– the only difference is in the connections among nodes

• : nodes connect in a “semi-rational” way

• : the connections happen in a purely random fashion

• 2nd step: generates the temporal random version of        : 

– T-RND algorithm

–

Random graphs generation

[1] F. Chung and L. Lu, “Connected Components in Random Graphs with Given Expected Degree

Sequences,” Annals of Combinatorics. Nov. 2002.
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• Clustering coefficient (cc): probability of two neighbors of a node to be 

directly connected

– good metric to differentiate social networks from random networks

– when cc G >> cc GR ⇒ (part of) the decisions made by the agent of G are 

non-random

Comparison with Random Graphs (2)

Each individual taxi encounters most of the other 

taxis   ⇒ similar to a random network
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RECAST classifier
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Social relationships

• Two main features:

– Regularity [2]

• Encounters between “friends” repeat often

– Similarity [3]

• two “friends” share common “friends”

• How to represent them mathematically?

– Edge persistence

– Topological overlap

[2] N. Eagle, A. Pentland, and D. Lazer, “From the Cover: Inferring friendship network structure by using mobile 

phone data,” Proceedings of the National Academy of Sciences, Sept. 2009.

[3] J. P. Onnela, J. Saram¨aki, J. Hyvoonen, G. Szab´o, D. Lazer, K. Kaski, J. Kert´esz, and A. L. Barab´asi, “Structure 

and tie strengths in mobile communication networks,” Proc. of the National Academy of Sciences, May 2007.
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Edge persistence

• Percentage of times an edge occurred over the past discrete time steps 

1,2, …, t

• Applied at the event graphs
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Edge persistence

• Complementary cumulative distribution function of per (i, j)

• 4 weeks of contacts of each dataset  

Individuals tend to see each other regularly, for 

reasons beyond pure randomness

Encounters occur almost 

in a random fashion

Feature values > x are very unlikely to occur in a random network ⇒

are most probably due to actual social relationships
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Topological overlap

• Ratio of neighbors shared by two nodes

• Extracted from the aggregated temporal graph
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Topological overlap

• Complementary cumulative distribution function of to (i, j)

• 4 weeks of contacts of each dataset  

Feature values > x are very unlikely to occur in a random network ⇒

are most probably due to actual social relationships

Individuals share common neighbors in a way that 

could not happen randomly

Common neighbors occur 

in a random fashion
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RECAST algorithm

• For each edge (i,j) 

– compute per(i,j) using the event graphs 

– compute to(i,j) using the aggregated temporal graph

• Compare these values with the ones from the random graph

– prnd can be seen as the expected classification error percentage 

• Classify edges into classes of relationships

3 types of social 

relationships
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Classification results
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Number/Percentage of edges per class vs prnd value

• 4 weeks of contacts of each dataset  

RECAST does not need a fine calibration of prnd to 

return a consistent edge classification

Similar dynamics in tight relationships among 

individuals in the two campuses

USC has a significantly higher 

tendency to evolve to a random 

topology than the Dartmouth
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Snapshots after two weeks of interactions

Only randomOnly social

Friendship edges are in blue

Bridges edges are in red

Acquaintance edges are in gray

Random edges are in orange

• Social-edges net.: Complex 

structure of Friendship 

communities, linked to each other 

by Bridges and Acquaintanceship

• Random-edges net.: No 

structure appears, looking like 

random graphs
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Cluster coefficient analysis, only Random edges 

Validates the efficiency of RECAST classification!
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Case of Study
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Data dissemination: when only edges of each class are used

Dartmouth dataset: 

Training set of 4 weeks

Test set at the 5th week

USC dataset: 

Training set of 6 weeks

Test set at the 7th, 8th, 9th weeks
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Data dissemination: results summary

• Efficient contamination needs: 

– edges that provide a high number of encounters inside communities (Friendship 

in Dartmouth and Acquaintanceship in USC) 

– edges that provide a high number of connections among individuals in different 

communities (Random and Bridges in Dartmouth and Random in USC)

• Contamination when Bridge + Friendship edges in the Dartmouth ≅≅≅≅

Random + Friendship

– Number of Bridge edges ≅ 12% the number of Random edges

– Using Bridge edges help to save computational resources
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Related initiatives

• Users classification into social and vagabonds [Zyba et al., Infocom 2011]

– regularity of appearance and duration of visits in a given area

– only works on a per-individual per-area basis

• Links classification into friends and strangers [Miklas et al., UbiComp 2007]

– pairs of users meeting 10 days or more out of 101 days are friends 

– otherwise are strangers

• A. G. Miklas et al., “Exploiting social interactions in mobile systems,” in Proc. of the UbiComp ’07. 

• G. Zyba et al. “Dissemination in opportunistic mobile ad-hoc networks: The power of the crowd,” in 

Proc. of IEEE INFOCOM 2011.
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Summary and outlook

• RECAST

– has no geographical dependency 

– combines user encounter frequency with their 2-hop social network ties

• periodic behaviors can explain 50% to 70%s of the human movement patterns

• but a non-negligible percentage of mobility (about 10% to 30%) is due to social 

relationships

– identifies different kinds of social interactions

• friendship, acquaintanceship and bridges

• Different mobility traces may have completely different behaviors

• Researchers should not generalize their results based on the analysis of a 

single trace
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Thanks for your attention!

Questions?
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Data dissemination: when only edges of each class are used

Dartmouth dataset: 

Training set of 4 weeks

Test set at the 5th week

USC dataset: 

Training set of 6 weeks

Test set at the 7th, 8th, 9th weeks
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Link prediction (training set = 4 weeks/test set = 5th week)


