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Abstract-Here we propose a set of dynamical measures to 
detect causality effects on communication datasets. Using ap­
propriate comparison models, we are able to enumerate patterns 
containing causality relationships. This approach is illustrated on 
a large cell phone call dataset: we show that specific patterns such 
as short chain-like trees and directed loops are more frequent in 
real networks than in comparison models at short time scales. 
We argue that these patterns - which involve a node and its close 
neighborhood - constitute indirect evidence of active spreading of 
information only at a local level. This suggests that mobile phone 
networks are used almost exclusively to communicate information 
to a closed group of individuals. Furthermore, our study reveals 
that the bursty activity of the callers promotes larger patterns 
at small time scales. 

I. INTRODUCTION 

The analysis of dynamical features in large interaction net­

works has recently focused much activity [BarOS], [OS+07], 

[MS+08], [IM09], [ZT+lO], [KK+11], [SQ+lO], [MMLlO], 

[MGVll] to overcome the limits of usual static represen­

tations. For example, in a social network, if A discusses 

with B and then B with C, that means that information can 

flow from A to C but not from C to A, so that a classical 

static description of data cannot account for the possible 

chronological constraints on the information spreading. In 

addition, the data is very often such that its representation 

would require the use of directed edges. For instance in phone 

communication data, each event involves a caller and a callee 

whose roles are asymmetric as the first one intends to call the 

second, which means that we should distinguish A --+ B from 

B --+ A. 
A wide-spread point of view consists in processing dy­

namical network data as if it were a succession of static 

pictures. Yet this does not give a comprehensive understanding 

of the features of the dynamical network, as it misses the 

chronological order of the interactions occurring between two 

successive snapshots. In other cases, the dynamical aspect is 

taken into account but the directedness of the data is neglected 

- even in communication datasets - making the analysis 

blind to the intention of the agents. Therefore, there is a 

great need for intrinsically dynamical measures that take into 

account features which cannot be seen using a sequence of 

static and/or undirected network representation. 

The limitation discussed above are particularly relevant 
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when it comes to the study of diffusion of information, 

such as rumor spreading. Information spreading is strongly 

affected by the directedness of the underlying network and 

the temporal ordering of the communications. Despite the 

ubiquity of the problem, practical tools to observe and measure 

such phenomena remain scarce. Since tracking an item that 

propagates over a real communication network is a very 

difficult task, there are only few works providing measures or 

estimations of this kind [PVOl], [GG+04], [LM+07], [CR09], 

[SGLlO], [FCLll]. Facing the absence of information on the 

spreading items, some studies use simulations and models to 

get clues about the influence of the structure and dynamics 

of interactions on the spreading processes [OS+07], [IM09], 

[KK+ 11], [MGVll]. 

We propose in this paper a set of dynamical tools that take 

into account the timescales and the directedness associated 

to the emerging patterns. We implement these tools in the 

context of a mobile phone call dynamical dataset, as these 

mobile networks provide an adequate ground for such studies 

[OS+07], [SQ+ 10], [ZT+ 10], [KK+ 11]. Our goal is to detect 

traces indicating events causality-correlated. Causality refers 

here to the fact that the existence of an event (a phone call) 

triggers the existence of another one at a certain point in time. 

We assume that such correlations are due to an exchange of 

an information item among the users. So the detection of 

correlated events inform us about the characteristics of the 

spreading process. This paper is organized as follows: sec­

tion II consists in a description of the dataset and the models 

which will be used throughout this paper. Section III is devoted 

to the description of the measured patterns whose appearance 

frequency informs us about how information spreads across 

the communication dynamical network. Finally Section IV 

proposes some promising perspectives to this work, regarding 

in particular how these tools can be generalized. 

II. DATABASE AND COMPARISON MODELS 

The measures we propose can be applied in any context 

where the data can be represented as "temporal" and directed 

events of the form: 

source (s) - destination (d) - timestamp (t) 

That is usually the case for dynamical communication net­

works such as phone calls, instant messaging, e-mail ex-



changes etc. In the following, we will call "static network" 

the picture obtained when considering all the nodes and links 

appearing at least once during the whole recording duration, 

the neighbors of a node being users calling or called by the 

considered user throughout the record. 

A. Dataset 

We apply our tools on a cellphone call record. Nodes are 

anonymized phone numbers of a European mobile phone 

provider. Some aspects of this dataset are described in 

[LB+08], and a statistical analysis of the underlying static 

network obtained is proposed in [SP09]. To remain as general 

as possible, our study will be constrained to the simplest 

attainable information in directed dynamical networks: an 

event will be described by the triplet {s, d, t}. 
For confidentiality reasons, we were given a connected 

subset of around a million individuals selected randomly 

among the users of the provider. Moreover, as we are interested 

in information transmission, we constrain ourselves to the 

study of "successful" phone calls - i.e., those where the 

receiver answers the phone call. Finally, we have a collection 

of around 14 million phone calls over a period of 1 month. 

B. Comparison models 

Our approach consists in comparing the features of the 

real dynamical network to randomized datasets, which we 

refer here as comparison models. These comparison models 

will allow us to identify the features of real data that drive 

the information spreading process, by comparing real data 

statistics to statistics obtained from randomized data that lacks 

correlations, bursting activity, etc. We provide below a short 

description of the comparison models. 

1) Time-mixing model (tmm): The phone calls timestamps 

are randomly mixed on the whole database, source and des­

tination remain identical. With T, the set of timestamps of 

the whole dataset, an event {s, d, t} of the original dataset is 

described in this model as 

{s,d,t'} ,  t' E T 

This trivial model keeps the global activity rate unchanged 

(such as daily or weekly periodicities), making it very close 

to models existing in the literature [MS+08], [ZT+ 10]. On 

the other hand it breaks the activity rates of each node taken 

individually, which is known to be non-poissonian in human 

communication datasets. Some authors described it as bursty 

in phone networks, and this is supposed to play an important 

role in the spreading phenomena [VR+07]. However, we show 

in the following that it yields results sufficiently close to the 

real data to be used as a baseline for comparing them to the 

other model that we define. 

2) Correlation-mixing model (cmm): Source and times­

tamps are kept identical, but destinations are shuffled within 

the set of destinations which are reached by this particular 

source during the whole record. If Vs is the set of the 

destinations reached by s (if d is called x times by s, he 

will be present x times), then any event {s, d, t} becomes 

is, d', t} , d' E Vs 

This model is specifically designed to detect traces of diffusion 

phenomena. In both its purposes and features, it has to our 

knowledge no equivalent in the literature: it is supposed to 

keep all the characteristics of the original dataset except for 

the causality link that may exist between a received phone 

call and subsequent phone calls. In other words, we wipe 

out the receiver-sender correlations. The calling activity of 

each individual remains indeed unchanged as well as the 

destinations of the calls but the correlation possibly existing 

between the phone calls given by two different users are 

broken. 

III. MEASUREMENTS AND RESULTS 

We describe in this section the statistical measurements 

that we use for tracking diffusion traces. They consist in 

enumerating dynamical patterns making use of a tunable time 

scale denoted T. This approach may be related to the one 

proposed by Zhao et at. in a recent article [ZT+ 10]; they 

also acknowledged the importance of such patterns but with 

different purposes, as identifying patterns characterizing a 

specific communication network. Here the patterns detected 

are chosen to be compared with cmm results, as we believe 

that they may support spreading processes. 

Let us stress that we aim at characterizing the spreading 

behavior of the agents, we are not interested in identifying 

particular events, or knowing the exact and complete route of 

an information item. 

From an algorithmic point of view, as the measures are 

designed to characterize large datasets, they must be efficient 

in terms of time complexity. The ones we propose in the 

following may be applied to a part of the dynamical dataset, 

so that it is possible to trade precision for speed. 

A. Causality cascades 

Let us consider the following situation: user A calls user B 

intending to give him a piece of information. If information 

spreading does occur in such database, we expect that B 

will call C within a rather short time span to relay this 

information. There is a causality link between these two events 

and we expect it to be detectable by observing shorter time 

elapsed between the call received and the next call given, 

when compared to the normal activity. Such phenomenon may 

involve more than two events, so that we can imagine some 

tree-like patterns whose abundance would be affected by the 

existence of a diffusion process. We explore this possibility in 

the following. 

1) Definition: A cascade is a tree whose nodes are users 

and links are phone calls. The event which sets the starting 

point is chosen randomly, its destination will be the first node 

of the cascade - i.e. the root of this tree. A new user is 

included in the cascade when he is called by an "active" user, 

that is to say a user who is already in the cascade for less 



than a time T; the corresponding phone call is included in the 

tree as a link. When all nodes of the cascade are not active 

anymore, it gets extinguished. This definition is implemented 

in Algorithm 1. 

An example of cascade is represented on Figure 1: the root 

calls three different nodes within a duration of T, they will 

themselves call respectively 3, 0 and 1 node and so on, until 

nobody in the cascade calls anyone within a period of T after 

being called. We call the total number of nodes in the cascade 

its size and denote it by (J", the number of levels from the root 

to the leaves will be named its depth 5. 

Fig. I. An example of cascade. The first node is not included in the cascade, 
so that the root is the first destination. Its size (number of nodes) a = 11, its 
depth (number of levels from the root to the leaves) 8 = 5. 

Such cascade is supposed to be sufficiently representative 

of a possible spreading process to provide a good proxy 

of it. A description close to the one we are using can be 

found in the literature [MMLI 0], here it is especially suited 

to record traces of diffusion processes using the timescale 

T. Let us notice that our cascade definition can be thought 

of as a deterministic SIR model, as described for example 

in [New02], with the difference that we consider directed 

networks. However, this aspect is out of the scope of this 

paper and all the questions that can arise from this comparison 

are the focus of another work [PTll]. 

For efficiency reasons, we do not use every event as a 

seed of a cascade, but we made samples with 102 different 

realizations of the models and measured cascades using 105 

starting points for each of them. 
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Fig. 2. Probability distribution of sizes of the cascades (real data), for T = 
12h, 24h, 48h. 

2) Size and depth distributions: Figure 2 shows the dis­

tribution of sizes of cascades for three values of T: 12h, 24h 

and 48h. We observe that above a certain threshold (comprised 

between 24h and 48h), very large cascades appear, with sizes 

comparable to the size of the static network (which is of 106 

nodes, according to our former definition). Moreover, at large 

values of T the distribution of sizes and depths obtained from 

real data, tmm, and cmm are virtually indistinguishable. From 

this fact, we conclude that the average information spreading 

process can be described at this scale by a random calling 

behavior, which only takes into account the activity patterns 

over the whole dataset (daily and weekly cycles for instance), 

but is not affected by either correlations among phone calls or 

individual bursty activity I. In other words, diffusion traces in 

these giant cascades are not detectable, so from now on, we 

will consider smaller time scales. 

10 
CJ 

100 

Fig. 3. Probability distribution of sizes (main) and depths (inset) of the 
cascades. Red circles: real data, green line: time-mixing model, dashed black 
line: correlation-mixing model. For each picture, left sheaf of curves: T = 
30min, middle: T = 3h, right: T = 12h. 

We present in Figure 3 the distribution of sizes (and depths) 

of the cascades obtained from the real data and both models, 

for different values of T = 30min, 3h and 12h. At small T 
values, time-mixing model produces smaller cascades than real 

data. Users are known to call at a very heterogeneous rate in 

real world: high activity periods may be followed by long 

rests - what is referred to as a bursty behavior. But tmm 

breaks down this individual activity rate: for each event, it 

associates a random timestamp of the dataset, therefore this 

effect can be explained by the fact that the individual bursty 

activity increases the probability of calling a new destination 

after being called within a T period. Note that in the literature, 

it is suggested that bursty individual activity patterns slow 

down the spreading of information [VR+07]. However, the 

observation of larger (in both size and depth) cascades in 

the real data than in the tmm indicates rather that the bursty 

behavior of individuals tends to promote the spreading. This 

is due to the fact that in [VR+07], the authors study the decay 

time in a SI model, which corresponds to a SIR model with 

T -+ 00, while our study deals with small time scales. In short, 

a spreading process occurring on a social network should be 

promoted by the bursty behavior at a local scale while it is 

slowed down at a macroscopic level. 

I A deeper analysis at these time scales can be found in [PTll]. 



Algorithm 1: Definition of a cascade of parameter T. 

input : T ; E = {eihEI : sequence of events ordered by increasing timestamp; 

output: tree T = N x L; 
II Initialization: 
draw randomly ei = {si,di,ti} E E; I I random selection of the root 
£ +--- (ei) ; I I ordered list of events with active nodes 
T +--- {di} X 0 ; I I initialization of the cascade 
II walk through the data as long as a node is active: 
while £ -=I- 0 and i -=I- max I do 

i +--- i + 1; 
ei +--- { Si' di, td; 
£' +--- £; 
if di rt- N then 

II search for a father in the cascade: 
while £' -=I- 0 do 

e f = {sf, d f , t f } +--- head £' ; 

II test if df is still active: 
if t f + T < ti then 

I 
£ +--- tail £; 
£' +--- tail £'; 

else 
II test of inclusion in the cascade: 
if df = Si then 

I
N+--- N U {di} ; L +--- L U {( Si' di) }; 
£ +--- append £ (ei); 

else 
L £' +--- tail £' 

Besides, the correlation-mixing model curves fit real data 

values for any T, implying that correlations between the 

activity of two communicating users - and consequently 

causality effects - do not impact the statistic of size and 

depth distributions. In the following we perform more refined 

statistical analysis and show that comparing them to the cmm 

provides detectable traces of the causality effects. 

3) Shape of the cascades: We focus on short time scales 

where correlations may have a stronger impact on the statistics, 

according to Fig. 3. One of the simplest ways of describing the 

relative abundance of cascade types consists in enumerating 

cascades with both size and depth fixed. We collect in Table I 

the probability Pa,6(T ) of observing a cascade of size u and 

depth 8, for different (but low) T. Correlation mixing model 

is supposed to be in all points identical to the real data except 

for the existence of correlation between events. As we are 

looking for the amount of patterns corresponding to causality­

related events, we focus in this analysis on cmm and real data. 

In addition, we only keep low size (u) values (which implies 

low depths 8, as 8 ::; u) to have sufficiently large amounts of 

cascades. 

As can be seen on these examples, the global trend is 

the same for various T values: the correlation-mixing model 

overestimates the probability of low-depth cascades while it 

underestimates high-depth ones. In other words, at this scale, 

real-world promotes more "chain-like" cascades and less "star­

like" than in the cmm case, where causality links between 

events have been broken. 

We can perform a quantitative comparison by measuring the 

ratio: 

For example, in the case of (u=5, 8=5) cascades, correspond­

ing to the chain-like pattern: ,R5,5(12h) = 1.72, 
indicating that the cmm model can only account on average 

for 58% of the cascades observed using real data. We can thus 

conclude that the remaining 42% of these cascades contain 

causality-correlated events, which suggests that some infor­

mation is propagating through these cascades. Along similar 

lines, the same kind of estimates can be done using any other 

measurement. 

Then, we plot on Figure 4 Ra,6 as a function of T for several 

values of (u,8), to get some insights about the time scales 

involved in the information spreading process. This measure 

is meaningful for patterns which are sufficiently numerous: 

large causality-correlated cascades are too rare to be observed 

through a statistical detection method. In other words, large­

scale spreading processes does not occur frequently in such 
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TABLE I 
PROBABILITY OF HAVING A CASCADE OF A FIXED SIZE a AND DEPTH <5. 

cell phone dataset. If it does exist, it might be observed through 

a method to detect outliers, but this is out of the scope of this 

work. 
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For the patterns under consideration, we observe a transient 

whose length varies from 10 minutes (R2,2) to 5 hours (R3•2), 
then the ratio is steady. Afterwards, the abundance of cascades 

does not bring any new information: both p�e8al and p�8m 
can change, but their ratio remains constant. 

' . 

Furthermore, during the first 5 hours, a large majority of 

the patterns containing correlations involve 2 or 3 nodes, 

meaning that the causality effects at short time scales impact 

significantly only the statistics of small cascades in this mobile 

phone dataset. That does not mean that these patterns are 

the only one which may support information spreading, nor 

that all the events of these patterns spread exactly the same 

information, but it means that at least one event as a causality 

bond with another: a call has been given because of a former 

call. 

B. Information loops 

The study of cascades has helped us to understand the 

features of the causality relationships between events possibly 

relaying an information in the network. Information loops do 

not have an impact on a large-scale spreading dynamics, since 

they do not involve new informed users. Nevertheless, it may 

occur that there is an active flow of information in close loops 

which is not visible using cascades - where nodes appear 

only once. On the other hand, we expect information loops to 

be strongly affected by causality effects. In this section, we 

focus on the possibility of such information loops. 

1) Reciprocal patterns: More precisely, after a certain call 

{A, B, td, we record the calls {B, C, t2} given by B during a 

period of T, i.e. t2 -tl :::; T, which leads to 3-nodes paths A ---+ 
B ---+ C. In the case where C = A, we will denote the pattern 

obtained a reciprocal pattern, a schematic representation is 

given in Figure 5, and a simple algorithm to enumerate them 

in Algo. 2. 

Fig. 5. Schematic representation of dynamical reciprocal pattern (left) and 
directed triangular patterns (right). 

Let us first count the number of such motifs for a few 

values of T: 

T 5min Ih 3h 10h 
preal r 0.018 0.076 0.120 0.166 
p�mm 0.008 0.046 0.084 0.131 

We can see that cmm clearly underestimates these motifs for 

all these T, meaning that the causality effects existing in real 

data but not in cmm tends to create more reciprocal motifs -

what was expected. 

To obtain quantitative estimates of the motifs containing a 

causality bond, we plot the ratio Rr (T) 
= p;eal jP;::.mm of 

probabilities measured in the one hand for the real data and 

in the other for cmm - in the same way as what we did 

formerly in the case of cascading motifs. The corresponding 

results are shown on Figure 6. We also represented in the inset 
p;::.mm jP;mm to show that there are more reciprocal motifs in 

the cmm than in the tmm during the first 8 hours. It suggests 

that the activity of neighbors in the static network - which 

stands in cmm but not in tmm - are correlated at short time 

scales. 



Algorithm 2: Algorithm to enumerate reciprocal motifs and directed triangular motifs. 

input : T ; £ = {ed iEI : sequence of events ordered by increasing timestamp; 

output: Number of reciprocal motifs Nr and directed triangular motifs Nt ; 
draw randomly em = {sm, dm, tm} E £ ; I I memorization of the seed event 
ei = {si,di,ti} +- em; 
Nr +- 0 ; Nt +- 0 ; I I initialization of the output 
while ti < tm + T and i i=- max I do 

i +- i + 1; 
ei +- {si,di,td; 
if Si = dm then 

Fig. 6. 

II reciprocal motifs enumeration: 
if di = Sm then 

I Nr +- Nr + 1 
else 

"t 

j +- i; 
II triangular motifs enumeration: 
while tj < ti + T and j i=- max I do 

l 
j +- j + 1; 
ej +- {sj,dj,tj}; 
if Sj = di and dj = Sm then 
L Nt +- Nt + 1; 
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We consider the main plot which compares the real data to 

cmm making use of the ratio p;mm /p;eal, the behavior can 

be roughly described as follows: during the first 8 hours the 

ratio drops sharply, then Rr decreases much more slowly. 

We can make quantitative estimates of the amount of corre­

lated events: for instance, there are 2.3 times more reciprocal 

motifs in the real data than in the cmm, for T =5min, we thus 

state that in 57% of these reciprocal motifs observed contains 

some causality relationship. In other words, the fact that B 

calls back A within 5 minutes is directly related to the fact 

that A called B just before in at least 57% of the cases. 

2) Directed triangular motifs: Following our reasoning, 

reciprocal calls are not the only communication motifs missed 

by the cascading behavior: it is blind to longer cycles of 

communication too. 

We define a directed triangular motif in the same way 

as what we did for a reciprocal motif: after a certain call 

{A, B, h}, we record the calls given by B during a period 

of T: {B, C, t2}, and then the calls given by C within T 
after receiving this phone call: { C, D, t3}, thus creating a 4-

node path of the form: A --+ B --+ C --+ D. If D = A 
the 3 nodes motif formed is denoted a (dynamical) directed 

triangular motif, a schematic representation of it is given in 

Fig. 5, and an enumeration method is included in Algo. 2. 

Along similar lines as before, we define Pt (T) as the prob­

ability to observe a directed triangular motif with parameter 

T, and then plot Rt ( T) = p[eal/ptmm 
of motifs obtained for 

real data and cmm on Figure 7. We can observe qualitatively 

the same kind of behaviors as above but at a smaller scale: 

there is a fast decay of the triangular motifs ratio during a 

transient regime of around 3 hours and then a steady state is 

reached. So the triangular motifs carry indeed detectable traces 

of correlation effects: for example, observing such a triangle 

30 minutes after the root phone call is around 2.4 times more 

frequent in real data than in cmm, meaning that 68% of these 

motifs contain a causality relationship. 

Such measures can be easily generalized to motifs involving 

more nodes. Yet when we consider motifs larger than or 

equal to 4 nodes on this specific dataset, the difference of 

behaviors between real data and cmm is not conclusive as 

the measures are too noisy. In other words, the causality­

correlated behaviors that we measured in this mobile phone 

dataset rarely involve more than 3 nodes and they are observed 

at short time scales only - except for the reciprocal patterns 

which may be detected during more than a day. It suggests 
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Fig. 7. Main: Rt(T) = p[eal/Pimm as a function of T. 

that such communication network is not used to support large 

scale diffusion processes. This observation is consistent with 

our daily experience: most of us use the telephone to talk 

with friends, colleagues, and relatives without the intention of 

passing along information we received from other phone call. 

IV. CONCLUSION 

We showed in this article that using the appropriate models 

and statistical tools, it is possible to count dynamical motifs of 

a large communication dataset which contain events causality­

related. We saw that the main features of cascades - such as 

their size and depth distributions - could be essentially ex­

plained by a random process, without any correlation between 

events. It is however important to take into account the bursty 

activity behavior of the users, which seems to promote the 

spreading processes at short time scales. This analysis reveals 

a remarkably low amount of causality bonds on mobile phone 

database, probably because the spreading of information over 

a large part of such network simply does not happen. On 

the contrary we observe causality effects at the level of short 

chain-like patterns as well as closed loops. It indicates the 

existence of information flows at a local scale - e.g. among 

group of friends. Such bond can be understood as the trace of a 

diffusion process in the cell phone dataset. We understand the 

absence of large-scale spreading as an indication that people 

usually do not use their mobile phone as a means to relay 

general news but rather personal information. 

The procedure here described to detect causality-related 

events can be tested on other kind of dynamical networks, 

where the information exchanged is available and the flow 

is directly observable, e.g. Twitter. It is likely that other 

dynamical networks exhibit different information spreading 

properties. For instance, in Twitter, we can expect a usage 

of the network intended to spread news to a wider audience. 

Along the same lines, peer-to-peer datasets should exhibit 

interactions involving correlations at larger scales (both in 

time and depth), because packets are circulating between total 

strangers, yet the formalism needs to be adapted to this con­

text. More generally, these versatile tools can be specialized 

to richer datasets, where information such as ties strengths or 

node features can give new insights on the interaction motifs 

and especially on diffusive behaviors. 
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