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Abstract Complex networks are generally composed of dense sub-networks
called communities. Many algorithms have been proposed to automatically
detect such communities. However, they are often unstable and behave non-
deterministically. We propose here to use this non-determinism in order to
compute groups of nodes on which community detection algorithms agree
most of the time. We show that these groups of nodes, called community cores,
are more similar to Ground Truth than communities in real and artificial
networks. Furthermore, we show that in contrary to the classical approaches,
we can reveal the absence of community structure in random graphs.

1 Introduction

Complex networks appear in various contexts such as computer science (net-
works of Web pages, peer-to-peer exchanges), sociology (collaborative net-
works), biology (protein-protein interaction networks, gene regulatory net-
works). These networks can generally be represented by graphs, where ver-
tices represent entities and edges indicate interactions between them.For ex-
ample, a social network can be represented by a graph whose nodes are indi-
viduals and edges represent a form of social relationship. Likewise, a protein-
protein interaction network can be modeled by a graph whose nodes are
proteins and edges indicate known physical interactions between proteins.
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An important feature of such networks is that they are generally composed
of highly interconnected sub-networks called communities [6]. Communities
can be considered as groups of nodes which share common properties and/or
play similar roles within the graph. The automatic detection of such com-
munities has attracted much attention in recent years and many community
detection algorithms have been proposed, see [11] for a survey. Most of these
algorithms are based on the maximization of a quality function known as
modularity [14], which measures the internal density of communities. Mod-
ularity maximization is an NP-complete problem [3], and most algorithms
use heuristics. For several reasons related to the modularity, as well as the
non-determinism of the algorithms or randomness in initial configuration,
such algorithms may produce different partitions of similar quality and there
is no reason to prefer one above another. Besides, such algorithms may find
communities with a high modularity in networks which have no community
structure, e.g. random networks [8]. This is related to the instability of al-
gorithms as shown in [1]: small perturbations of the input graph can greatly
influence the output.

Here, we assume that, if several community detection algorithms, or mul-
tiple executions of a non-deterministic algorithm agree on certain sets of
nodes, then these sets of nodes are certainly more significant. On this basis,
we study the tendency of pairs of nodes to belong to the same community
during multiple executions of a non-deterministic community detection al-
gorithm. Experimental results on both artificial and real networks show the
performance of this concept and we show in particular that it allows to dis-
tinguish random from non-random networks.

We provide a general description of algorithms used for detecting consensus
communities in Section 2. We then present our previous contributions in
Section 3. Finally, we describe the experimental results on artificial and real
networks in Section 4 and on random networks in Section 5 before concluding
in Section 6.

2 Algorithms for the identification of consensus
communities

Two main methods have been used to combine different partitions into a set
of consensus communities. One is based on network perturbations. The other
one takes advantage of changing the initial configuration of the algorithms.

Network perturbations: Since most community detection algorithms
are deterministic, small perturbations can be made on the network to ob-
tain different results. Then, communities are found in each modified network
and compared to the partition of the original network to obtain consensus
communities. Several methods of network perturbations are proposed in the
literature. For example in [9] the method involves removing a fraction of links
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and putting them back between randomly selected pairs of vertices. Another
technique consists in adding noise to the weight of links, i.e. slightly change
them in order to influence the algorithm. For example, in [17] it is proposed
to change the weight of links using a Poisson distribution whose parameter
is the average weight of links in the original graph. In [5], the noise added to
the weight of a link between nodes i and j, initially equal to wij , is given by
a distribution between −σwij and σwij , where σ is a constant parameter. A
weakness of this method is that it needs an additional parameter σ, whose
value is in principle arbitrary. In addition, these studies consider only pairs
of adjacent nodes. We will see later that we may identify nodes with a strong
tendency to be in the same community even if there is no direct link between
them. Also, in these studies, the comparison was made with the partition of
the original network, whose significance is not obvious.

Changing the initial configuration of an algorithm: Most algorithms
start with an initial partition which is modified many times until a high
quality partition is obtained. In general, the algorithms are very sensitive to
the initial partition and modifying it may lead to different outcomes. This
method is used in [16], to identify overlapping communities by identifying
stable and unstable nodes. In [10] this method is used in order to detect
communities in multi-scale networks.

There are also similar methods in ensemble clustering like [19] but here
we study networks, i.e. structured data, not an unordered set of vectors. In
this article, we use the second approach by randomizing the order in which
nodes are considered. In addition, we consider all pairs of nodes and not only
connected pairs of nodes.

3 Community cores

Given a graph G = (V,E) with n = |V | vertices, we apply N times a non-
deterministic community detection algorithm A to G. In the following we use
the non-deterministic algorithm known as Louvain method [2]. At the end
of an execution, each pair of nodes (i, j) ⊆ V × V can be classified either in
the same community or in different communities. We keep track of this in a
matrix of size n×n, which we denote by PNij = [pij ]

N
n×n, where pij represent

the fraction of the N executions in which i and j were classified in the same
community. Note that pij = pji, and we set pii = 0. From PNij , we create
a complete weighted graph G′ = (V,E′,W ), where the weight of the link
(i, j) is pij . Finally, given a threshold α ∈ [0, 1], we remove all links having
pij < α from G′ to obtain the thresholded virtual graph, G′′α. The connected
components in G′′α obtained with a given α are called α-cores, which are
non-overlapping sets of nodes.. A pseudo-code version of this algorithm is
given in Algorithm 1. We now analyze the impact of the parameters on the
results.
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Algorithm 1 Core detection
1: Input: a graph G = (V,E), a threshold α, a number of executions N , a non-

deterministic community detection algorithm A
2: Apply N times the algorithm A to G

3: Create a matrix PNij = [pij ]
N
n×n where pij is the proportion of times that i and j

belonged to the same community

4: Create a complete weighted graph G′ = (V,E′,W ) with |V | nodes and pij as weights

5: Remove all edges ij where pij < α from G′ to obtain G′′α
6: The connected components of G′′α are α-cores

Number of executions: We can estimate the variation of pij after each
execution of algorithm A by calculating the Euclidean distance between pij
values as a function of the number of executions N . As shown in [16], the
variation of pij converges when the number of executions N increases. It is
therefore possible to terminate the iteration when the variation of pij is small
enough. We derive no theoretical bound on the minimum number of execu-
tions to ensure good statistical significance on the estimators pij . However,
we observe that even with an order of magnitude larger of the number of
executions, the results do not change much.

Threshold: The threshold α has a strong influence on the results of the
algorithm. The proposed algorithm does not aim at finding the largest sets
of nodes that are all connected to each other with a pij ≥ α. There are two
reasons for this: (i) the calculation of cores in this case would consists in
finding the largest cliques in G′, which is an NP-complete problem and (ii)
cores could then overlap, which is not allowed in our case. More precisely,
given a threshold α, a core may contain pairs of nodes connected with a
probability smaller than α.

3.1 Hierarchical structure of cores

The parameter α has a strong influence on the size of the cores, it furthermore
allows to obtain a hierarchical structure of cores. Indeed α1-cores are included
in α2-cores if α1 > α2, i.e. α1-cores are sub-cores of α2-cores. Let us discuss
this on an example.

The Algorithm 1 is applied to the famous friendship network of Zachary’s
karate club [21]. Figure 1 shows the dendrograms of this network for N = 102

and N = 105, while Figure 3 shows the cores identified by our algorithm.
We can see that the division found by the algorithm with N = 102 and
α = 0.32 corresponds almost perfectly to the Ground Truth and only node
10 is misplaced. Note that the number and size of cores is greatly influenced
by the choice of α.

We also applied our algorithm to graphs of different sizes from different
domains, including a collaboration network [13], an email network [7] and
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Fig. 1 Hierarchical structure of cores of Zachary’s network for N = 102 and N = 105

a snapshot of the Internet (created by M. Newman, unpublished). As Fig-
ure 2(a) shows, with a threshold close to zero we obtain very large cores (even
larger than the communities) and a strict threshold e.g. α = 1 will lead to
tiny cores, most of which consisting in only one single node (called trivial
cores). We also observe in Figure 2(b) that with an α < 0.5, we have a gi-
ant core containing the majority of nodes. When the threshold increases, the
cores will split quickly into small cores. But in the Internet or email network
we still have a giant core containing 10% of the nodes even with an α equal
to 1. Note that community partitions also contain a giant community.
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(b) Size of giant core vs threshold α

Fig. 2 Impact of threshold to the size of the cores

It must be noted that, as explained above, the nodes inside a core are
not necessarily connected in the original network. For example, in Fig-
ure 3(c), a core containing the nodes 18, 20 and 22 is identified with a
threshold α = 1, however, there is no direct link between these three nodes
in the original graph. As Figure 3(d) illustrates, these nodes were always to-
gether either in the community cx = {1, 18, 20, 22, . . .} or in the community
cy = {2, 18, 20, 22, . . .}. This property is interesting and shows that we can
identify groups of nodes with a strong tendency to be together even if they
have no direct link.
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Fig. 3 (a), (b) and (c) Cores for Zachary’s network using three different thresholds. The

shape of the nodes (circle/square) is the manual classification made by Zachary. (d) A

subgraph of the virtual graph of Zachary’s network.

We studied the distribution of pij in the matrices. The Figure 4(a) shows
the pij distributions of the Zachary’s network for N = 102 and N = 105.
As we can see, most pairs are nearly always grouped or separated, but there
are some pairs of nodes in the middle which are sometimes together and
sometimes separated. The nodes constituting those pairs are less stable. We
observe on Figure 4(b) that even on large graphs the majority of pairs are
never classified together, and that a significant number of pairs of nodes are
always in the same cluster. A large fraction of these pairs are linked in the
original network.
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Fig. 4 pij distribution for (a) Zachary’s network and (b) three real-world networks.
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4 Significance of cores

We now apply our method to some artificial and real networks having a known
community structure, to evaluate the significance of the identified cores.

A classical approach to evaluate the quality of a cluster partition con-
sists in comparing the similarity of the clusters with known communities (or
Ground Truth). Various measures of similarity between two clusterings have
been proposed [15], and the most widely used is the mutual information, from
information theory. It counts the number of bits shared by two random vari-
ables. Despite the popularity of mutual information, there are many ways
to normalize it, which lead to different values, without definitive solution.
Also, it is shown that the mutual information depends on the size of the
partitions [20], therefore we used an adjusted version of this metric, called
AMI [20]. We also used the edit distance presented in [1] which gives similar
results and in some cases is simpler to interpret (data not shown).

Girvan and Newman artificial network [6]: Each graph is constructed
with 128 vertices in 4 groups of 32 vertices each. Vertices of the same group
are linked with a probability pin, whereas vertices of different groups are
linked with a probability pout. Each subgraph corresponding to a group is
therefore an Erdös-Rényi random graph [4] with connection probability pin.
The probabilities are chosen so as to obtain an average degree z = 16. With
pin > pout the intra-cluster edge density exceeds the inter-cluster edge density
and the graph has a community structure. Figure 5(a) shows a comparison
of the similarity of cores and communities to Ground Truth for zout = 8
which is a value of zout for which most community detection algorithms fail
to identify communities. As we can see, for some α, cores are more similar to
Ground Truth than communities.

American College football: This network is also a popular test net-
work with a known community structure [6]. We compare our results with
the known partitioning and we find that our algorithm reliably detects the
known structure: cores are more similar to known community structure than
communities for a wide range of α (see Figure 5(b)).

Another metric that we have used to evaluate the significance of cores is
the p-value. The p-value is the probability of obtaining a test statistic at least
as extreme as the observed one, assuming that the null hypothesis is true,
i.e. assuming that the observed structure is only due to chance. The p-value
varies between 0 and 1. The lower the p-value, the stronger the test rejects
the null hypothesis, i.e. confirms the significance of the results.

Proteome network: We used this metric to evaluate the significance of
identified cores on the Baker’s yeast proteome network [18]: nodes are proteins
and there is a link when two proteins have been shown to interact. Proteins
can work together to achieve a particular function and we used these func-
tions (for instance metabolism or replication) as Ground Truth: a correlation
between the clustering and the functions would validate the clustering. We
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Fig. 5 (a) Girvan-Newman artificial network. (b) American College football.

define the null hypothesis as stating that a core is a random subset of the
nodes, of a given size. Thus, for a given function, the number of proteins (or
nodes) in the core having this function should follow a hypergeometric law. A
small p-value thus denotes the fact that many more proteins than expected
have the mentioned function: the nodes have not been chosen at random, but
with a bias towards this function.

In Table 1, by comparing the lines having the same label, e.g. ”GO:0070478”,
between the cores and communities, one can see that cores have smaller p-
values, except for a few big groups with extremely small p-values, where our
method removes some nodes from the group yielding a slightly worse p-value.
Also, in cores table, the p-values are smaller when α < 1, which means that
there is a higher correlation between cores and functions. These findings show
that our methodology helps to find relevant sets of cofunctional nodes.

5 Random graphs

We have shown that cores are efficient at finding a Ground Truth on real and
artificial networks. In random graphs, the nodes are linked independently to
each other so a strong inhomogeneity in the density of links on these graphs
is not expected. Therefore random graphs should not have communities. But,
as shown in [8], due to fluctuations it is possible to find a partition which
has a high modularity for random networks. A good algorithm should in-
dicate both the presence and the absence of community structure. In the
following we show that cores cannot be found in random graphs, using two
different random graphs model: the classical Erdös-Rényi model [4] and the
configuration model [12], which is a construction model that has the degree
distribution as an input but is random in all other respects.

First of all, Figure 6(a) shows the impact of the number of execution N on
the distribution of the pij for a random graph G(n,M). While there are some
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(a) Cores

function p-value gs gf cs cf

α
=

1
.0

0
GO:0016021 3e-134 5033 927 332 258
GO:0055085 3e-58 5033 244 332 100

GO:0005763 1e-45 5033 28 30 21

GO:0005847 7e-36 5033 15 20 14
GO:0005789 8e-36 5033 187 332 69

GO:0016455 7e-35 5033 23 19 15

GO:0016592 1e-34 5033 24 19 15
GO:0051123 1e-33 5033 17 15 13

GO:0032040 1e-33 5033 41 22 17

GO:0000176 2e-33 5033 13 14 12

α
=

0
.9

9

GO:0016021 4e-161 5033 927 398 307

GO:0055085 2e-67 5033 244 398 116
GO:0005730 1e-51 5033 180 180 65

GO:0000398 6e-50 5033 58 164 41
GO:0005763 1e-47 5033 28 32 22

GO:0005762 2e-41 5033 36 31 21

GO:0005789 3e-41 5033 187 398 80
GO:0046540 2e-40 5033 28 164 27

GO:0016455 3e-37 5033 23 142 23

GO:0071004 9e-37 5033 29 164 26

α
=

0
.9

8

GO:0016021 2e-161 5033 927 407 311

GO:0055085 3e-66 5033 244 407 116
GO:0005730 5e-51 5033 180 223 70

GO:0000398 9e-51 5033 58 173 42

GO:0005763 1e-47 5033 28 32 22
GO:0005789 1e-42 5033 187 407 82

GO:0005762 2e-41 5033 36 31 21

GO:0046540 1e-39 5033 28 173 27
GO:0071004 4e-36 5033 29 173 26

GO:0070478 2e-35 5033 17 18 14

(b) Communities

function p-value gs gf cs cf

GO:0016021 8e-170 5033 927 456 338
GO:0055085 9e-075 5033 244 456 129

GO:0005730 2e-050 5033 180 343 82

GO:0005789 1e-044 5033 187 456 88
GO:0000398 6e-044 5033 58 345 46

GO:0005680 3e-031 5033 16 14 12

GO:0046540 3e-031 5033 28 345 27
GO:0008054 3e-030 5033 12 14 11

GO:0031145 2e-029 5033 13 14 11

GO:0007091 2e-029 5033 13 14 11
GO:0030687 5e-029 5033 35 343 29

GO:0071004 6e-028 5033 29 345 26
GO:0045449 6e-028 5033 167 352 59

GO:0016455 1e-027 5033 23 352 23

GO:0006350 1e-026 5033 308 352 79
GO:0005847 2e-026 5033 15 107 15

GO:0016592 3e-026 5033 24 352 23

GO:0006406 5e-026 5033 53 632 40
GO:0006378 8e-026 5033 18 107 16

GO:0004298 1e-025 5033 14 92 14

GO:0000022 3e-025 5033 23 14 11
GO:0005762 7e-025 5033 36 345 27

GO:0005484 1e-024 5033 24 212 20

GO:0005763 1e-024 5033 28 356 24
GO:0000070 2e-023 5033 31 14 11

GO:0005666 7e-023 5033 18 160 16
GO:0006611 1e-022 5033 31 632 28

GO:0032040 1e-022 5033 41 343 27

GO:0005886 5e-021 5033 222 456 68
GO:0005685 1e-020 5033 17 345 17

GO:0070478 1e-020 5033 17 128 14

Table 1 Table of p-values for Baker’s yeast proteome network . The parameters to com-

pute the p-value are: gs: total number of nodes in the network, gf : number of proteins

having this function among all the nodes of the network. cs: size of the core cf : number of
protein in the present core having this function

high values of pij , there is a high concentration of pij at an average value
(0.1 with the selected parameters: 1000 nodes, 20000 links). We obtain similar
results with a wide range of parameters, see Figure 7. This means that even
if we can find partitions with a good modularity, algorithms cannot choose
between these partitions.

These results can be explained by the fact that using low values of thresh-
old, our algorithm finds a single core comprising all nodes and since there is
nearly no high values in random networks, there is no core with high values of
the threshold, while real-world networks have high threshold cores (see Fig-
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Fig. 6 pij distribution for different N (a). Absence of cores in random graphs (b).
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Fig. 7 Distribution of the pij averaged over 100 realizations, with N = 103. Networks

with different number of nodes n and an average degree of λ = 20 (left). Networks with
n = 1000 nodes and different values of λ (right).

ure 6(b)). Interestingly, in random networks there is a sharp transition (as
shown by the cusp at a threshold value around 0.3) between the situation
where one single core is present and the intermediate threshold values where
several cores are present, which is not present in real-world networks.

To further validate these results, we compared the cores of two real-world
networks with random graphs that have the same size (and same degree
distribution for the configuration model), see Figure 8. In the case of the
Erdös-Rényi model, there is no pair of nodes with pij = 0, which means
that all pairs of nodes have been grouped together at least once during 1000
execution of the Louvain algorithm. Conversely, there is nearly no pair of
nodes which are always grouped together, but for the leaves (nodes of degree
1) of the network which are always grouped with their only neighbor.

All these results show that random and real-world network behave very
differently from a core perspective, while both can exhibit a “classical” com-
munity structure, as measured by the modularity. This result gives a strong
advantage to cores versus communities.
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Fig. 8 pij distribution for two real-world networks together with Erdös-Rényi and con-

figuration model random graphs with the same size.

6 Conclusion

In this paper, we have investigated community structure of complex networks,
using community cores which may improve the significance and the stability
of groups of nodes detected by current community detection algorithms. We
showed that community detection algorithms use heuristics methods which
lead to different partitions of similar quality and there is no reason to prefer
one above another. Furthermore, community detection algorithms are highly
unstable and can find communities in graphs that have none.

If multiple executions of a non-deterministic community detection algo-
rithm agree on certain sets of nodes, then these sets of nodes can be consid-
ered as more significant. We showed that cores have a hierarchical structure
which can be obtained using different thresholds in our proposed algorithm.
We applied our method to both artificial and real networks and showed the
performance of our approach when comparing cores to Ground Truth. More
particularly, in random networks we find an absence of cores for high enough
values of the parameter α. This might provide a robust way to distinguish
random networks from real-world networks.

The perspectives of our work are to find a meaningful way to select the
threshold, even if the whole hierarchy can be useful as it gives a multi-scale
view of the network, and to study the dynamical networks and the evolution
of cores in such networks1.

1 This work is supported in part by the French National Research Agency contract Dyn-
Graph ANR-10-JCJC-0202.
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