Impact of Clustering on Epidemics in Random Networks

Joint work with Marc Lelarge

INRIA-ENS

2 April 2012

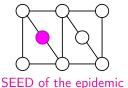
Outline

- 1 Introduction : Social Networks and Epidemics
- Random Graph Model
- 3 First Epidemic Model : Diffusion
- Second Epidemic Model : Contagion

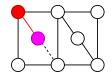
Outline

- 1 Introduction : Social Networks and Epidemics
- Random Graph Model
- First Epidemic Model : Diffusior
- 4 Second Epidemic Model : Contagion

- I. Diffusion (classical SI model)
- II. Contagion (from Game Theory)
 - I. DIFFUSION model, with transmission parameter $\pi \in (0,1)$:



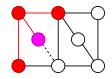
- I. Diffusion (classical SI model)
- II. Contagion (from Game Theory)
 - I. DIFFUSION model, with transmission parameter $\pi \in (0,1)$:



--- transmission

- - - no transmission

- I. Diffusion (classical SI model)
- II. Contagion (from Game Theory)
 - I. DIFFUSION model, with transmission parameter $\pi \in (0,1)$:



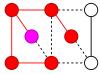
--- transmission

- - - no transmission

- I. Diffusion (classical SI model)
- II. Contagion (from Game Theory)

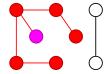
I. DIFFUSION model, with transmission parameter $\pi \in (0,1)$:

DIFFUSION MODEL



Infected nodes at the end of the epidemic

BOND PERCOLATION



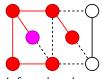
Connected component of the seed in the bond percolated graph

 \Leftrightarrow

- I. Diffusion (classical SI model)
- II. Contagion (from Game Theory)

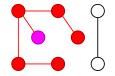
I. DIFFUSION model, with transmission parameter $\pi \in (0,1)$:

DIFFUSION MODEL



Infected nodes at the end of the epidemic

BOND PERCOLATION



Connected component of the seed in the bond percolated graph

Each infected neighbor can transmit the epidemic *independently*.

 \Leftrightarrow

II. Game-theoretic CONTAGION model on a given graph G = (V, E), with parameter $q \in (0, 1/2)$:

Two possible choices: $(\leftrightarrow \text{susceptible})$ or $(\leftrightarrow \text{infected})$

Initially: all use , except one who uses

Possible switch \longrightarrow \longrightarrow , but no switch \longrightarrow \longrightarrow

Situation	Payoff (for both users)
*	q
etha —etha	1-q>q
EMP	0

Total payoff = sum of payoffs from all your neighbors

Infinite deterministic graph G = (V, E)

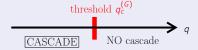
Parameter q varies :

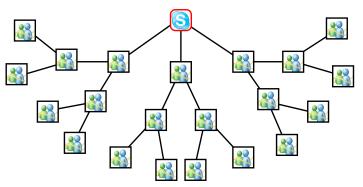
$$q \text{ small} \Rightarrow \boxed{\mathsf{CASCADE}}$$
 $q \text{ higher} \Rightarrow \mathsf{NO} \text{ cascade}$

More precisely:

 $q_1 \geq q_2$, cascade for $q_1 \Rightarrow$ cascade for q_2

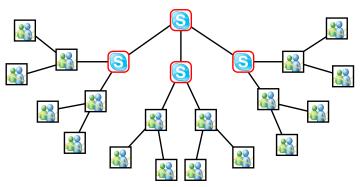
Contagion threshold $q_c^{(G)} := \sup \big\{ \ q \ \big| \ \mathsf{CASCADE} \ \mathsf{in} \ \ G \ \mathsf{for} \ \mathsf{parameter} \ \ q \big\}$





$$q \ge 1/d \quad \Rightarrow \quad \mathsf{NO} \; \mathsf{cascade} \ q < 1/d \quad \Rightarrow \quad \mathsf{CASCADE} \$$

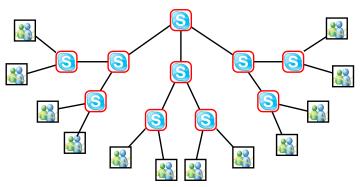
$$\Rightarrow q_c^{(G)} = 1/d$$



$$q \ge 1/d \quad \Rightarrow \quad \mathsf{NO} \; \mathsf{cascade} \ q < 1/d \quad \Rightarrow \quad \mathsf{CASCADE} \$$

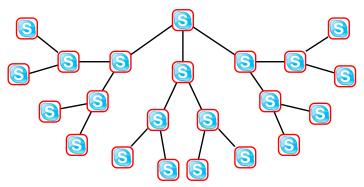
$$\Rightarrow q_c^{(G)} = 1/d$$

4□ > 4₫ > 4½ > ½ > ½



$$q \geq 1/d \quad \Rightarrow \quad \mathsf{NO} \; \mathsf{cascade} \ q < 1/d \quad \Rightarrow \quad \mathsf{CASCADE} \$$

$$\Rightarrow q_c^{(G)} = 1/d$$



$$q \ge 1/d \Rightarrow \text{NO cascade}$$

 $q < 1/d \Rightarrow \text{CASCADE}$

$$\Rightarrow q_c^{(G)} = 1/d$$

Define a model of finite random graphs (whose size tends to infinity)

- having (asymptotically) the observed properties :
 - ▶ scale-free networks \Leftrightarrow power law degree distribution i.e. there exists $\tau > 0$ such that, for all $k \geq 0$, $p_k \propto k^{-\tau}$ (small number of nodes having a large number of edges)
 - networks with clustering ("The friends of my friends are my friends", Newman, '03)
- tractable

Epidemic models on finite random graphs:

Final nb of infected nodes negligeable or not / population size?

 G_n = random graph of size n S_n = final size of the epidemic in G_n

CASCADE if
$$S_n = \underset{n \to \infty}{=} \Theta_p(n)$$
, NO cascade if $S_n = \underset{n \to \infty}{=} o_p(n)$.

Epidemic models on finite random graphs:

Final nb of infected nodes negligeable or not / population size?

	DIFFUSION MODEL	CONTAGION MODEL
Ref.	Bond percolation	Morris, Watts
Para-	$\pi=$ probability that an edge	A vertex is infected ⇔
-meter	transmits the epidemic	fraction of infected neighbors $> q$
		$\frac{1}{3} \le q \qquad \frac{2}{3} > q$
Thm	$\begin{array}{c} \text{threshold } \pi_c \\ \hline \text{NO cascade} \end{array} \blacktriangleright \pi$	$\begin{array}{c} \text{threshold } q_c \\ \hline \\ \hline \text{CASCADE} \end{array} \text{NO cascade} \qquad \qquad q$

Effect of clustering on these thresholds and on the cascade size

Outline

- 1 Introduction: Social Networks and Epidemics
- Random Graph Model
- First Epidemic Model : Diffusior
- 4 Second Epidemic Model : Contagion

- (i) Start from a uniform graph with given vertex degrees
- (ii) Add clustering

(i) Original graph (with given vertex degrees) :

- $n \in \mathbb{N}$, $\mathbf{d} = (d_i)_1^n$ sequence of non-negative integers (s.t. \exists a graph with n vertices and degree sequence \mathbf{d}).
- $G(n, \mathbf{d})$ = uniform random graph (among the graphs with n vertices and degree sequence \mathbf{d}).

Ref. : (Lelarge, '11) for the study of contagion and diffusion models on graphs with given vertex degrees

- (i) Start from a uniform graph with given vertex degrees
- (ii) Add clustering

(i) Original graph (with given vertex degrees) :

- $n \in \mathbb{N}$, $\mathbf{d} = (d_i)_1^n$ sequence of non-negative integers (s.t. \exists a graph with n vertices and degree sequence \mathbf{d}).
- $G(n, \mathbf{d})$ = uniform random graph (among the graphs with n vertices and degree sequence \mathbf{d}).

Condition: Assume there exists a probability distribution $p = (p_r)_{r=0}^{\infty}$ such that :

- (i) $\sharp \{i: d_i = r\}/n \to p_r \text{ as } n \to \infty$, for every $r \ge 0$
- (ii) $\lambda := \sum_{r} rp_r \in (0, \infty)$
- (iii) $\sum_i d_i^3 = O(n)$

Ref. : (Lelarge, '11) for the study of contagion and diffusion models on graphs with given vertex degrees

(ii) Clustering Coefficient of G = (V, E):

 $\mathcal{C}^{(G)}:=$ probability that two vertices share an edge together, knowing that they have a common neighbor

$$C^{(G)} = \frac{3 \times \text{nb of triangles}}{\text{nb of connected triples}} = \frac{\sum_{v} P_{v}}{\sum_{v} N_{v}}$$

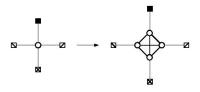
 $P_v := \text{nb}$ of pairs of neighbors of v sharing an edge together, $N_v := \text{nb}$ of pairs of neighbors of $v : N_v = d_v(d_v - 1)/2$.

Example : $N_v = 3$

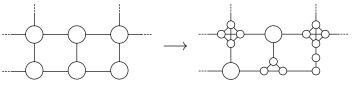
$$P_{\rm v} = 2$$

$$P_{\rm v} = 3$$

• Idea : Replace a vertex of degree r in G(n, d) by a clique of size r :



- Idea : Replace a vertex of degree r in G(n, d) by a clique of size r.
- Adding cliques randomly : Let $\gamma \in [0,1]$. Each vertex is replaced by a clique with probability γ (independently for all vertices).



- $\tilde{G}(n, \mathbf{d}, \gamma)$ = resulting random graph (with additional cliques) Similar model : (Trapman, '07), (Gleeson, '09)
- Particular cases :

 - $\gamma = 1 \Rightarrow$ all vertices in $G(n, \mathbf{d})$ have been replaced by cliques.
- New asymptotic degree distribution $\tilde{\pmb{p}}=(\tilde{p}_k)_{k\geq 0}$
- Asymptotic clustering coefficient C>0

Outline

- 1 Introduction: Social Networks and Epidemics
- 2 Random Graph Model
- 3 First Epidemic Model : Diffusion
- 4 Second Epidemic Model : Contagion

- At the beginning, activate a given vertex (= the seed of the epidemic)
- ullet Transmit the epidemic through any edge with probability π

INITIAL GRAPH	GRAPH WITH CLIQUES

- At the beginning, activate a given vertex (= the seed of the epidemic)
- ullet Transmit the epidemic through any edge with probability π

INITIAL GRAPH	GRAPH WITH CLIQUES

- At the beginning, activate a given vertex (= the seed of the epidemic)
- ullet Transmit the epidemic through any edge with probability π

INITIAL GRAPH	GRAPH WITH CLIQUES

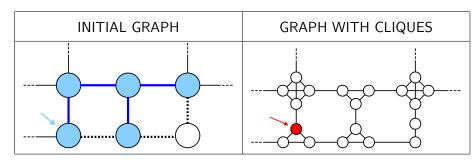
- At the beginning, activate a given vertex (= the seed of the epidemic)
- ullet Transmit the epidemic through any edge with probability π

INITIAL GRAPH	GRAPH WITH CLIQUES

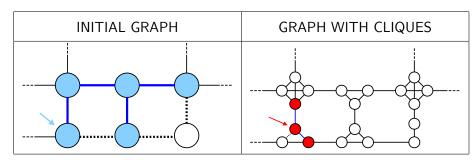
- At the beginning, activate a given vertex (= the seed of the epidemic)
- ullet Transmit the epidemic through any edge with probability π

INITIAL GRAPH	GRAPH WITH CLIQUES

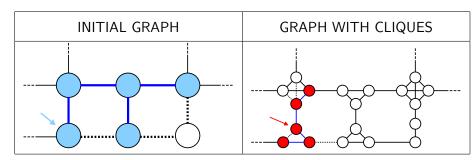
- At the beginning, activate a given vertex (= the seed of the epidemic)
- ullet Transmit the epidemic through any edge with probability π



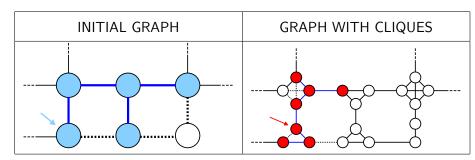
- At the beginning, activate a given vertex (= the seed of the epidemic)
- ullet Transmit the epidemic through any edge with probability π



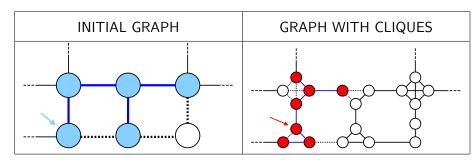
- At the beginning, activate a given vertex (= the seed of the epidemic)
- ullet Transmit the epidemic through any edge with probability π



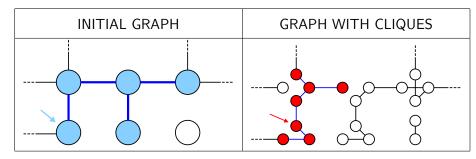
- At the beginning, activate a given vertex (= the seed of the epidemic)
- ullet Transmit the epidemic through any edge with probability π



- At the beginning, activate a given vertex (= the seed of the epidemic)
- ullet Transmit the epidemic through any edge with probability π



- At the beginning, activate a given vertex (= the seed of the epidemic)
- ullet Transmit the epidemic through any edge with probability π



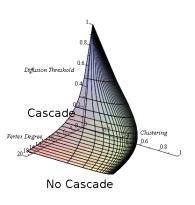
Connected component of the seed in the bond percolated graph

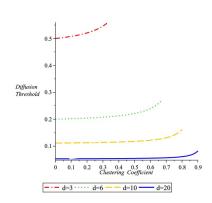
Theorem (DIFFUSION THRESHOLD)

Let π_c be the solution of the equation : $\pi' = \frac{\mathbb{E}[D_{\pi'}]}{\mathbb{E}[D_{\pi'}(D_{\pi'}-1)]}$, where $D_{\pi'}$ is a random variable with a given distribution that depends on p, γ and π' .

- $\pi > \pi_c$: There exists *whp* a giant component in the percolated graph, *i.e.* a single node can trigger a global cascade.
- $\pi < \pi_c$: The size of the epidemic generated by a vertex u (chosen uniformly at random) is negligeable: $o_p(n)$.

Diffusion Threshold π_c vs Clustering (in random d-regular graphs)





Outline

- 1 Introduction: Social Networks and Epidemics
- 2 Random Graph Model
- First Epidemic Model : Diffusior
- Second Epidemic Model : Contagion

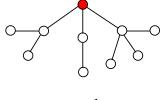
- At the beginning, one infected vertex (= the seed of the epidemic)
- At each step, each vertex becomes infected if :

proportion of its infected neighbors > q

Heuristically...

The random graph G(n, d) converges locally to a random tree such that :

$$\mathbb{P}\left(r-1 \text{ children}\right) = rp_r/\lambda$$



$$j=\frac{1}{4}$$

Infected nodes = those with degree < 1/q

Infinite tree (of infected nodes)

$$\iff \sum_{r<1/q} (r-1) \frac{rp_r}{\lambda} > 1$$

4□ > 4₫ > 4½ > ½
 9

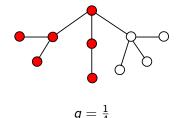
- At the beginning, one infected vertex (= the seed of the epidemic)
- At each step, each vertex becomes infected if :

proportion of its infected neighbors > q

Heuristically...

The random graph G(n, d) converges locally to a random tree such that :

$$\mathbb{P}\left(r-1 \text{ children}\right) = rp_r/\lambda$$



Infected nodes = those with degree < 1/q

Infinite tree (of infected nodes)

$$\iff \sum_{r<1/q} (r-1) \frac{rp_r}{\lambda} > 1$$

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 4□

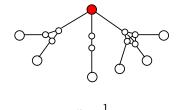
- At the beginning, one infected vertex (= the seed of the epidemic)
- At each step, each vertex becomes infected if :

proportion of its infected neighbors > q

Heuristically...

The random graph G(n, d) converges locally to a random tree such that :

$$\mathbb{P}\left(r-1 \text{ children}\right) = rp_r/\lambda$$



Infected nodes = those with degree < 1/q

Infinite tree (of infected nodes)

$$\iff \sum_{r<1/q} (r-1) \frac{rp_r}{\lambda} > 1$$

4□ > 4₫ > 4½ > ½
 9

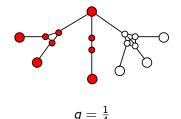
- At the beginning, one infected vertex (= the seed of the epidemic)
- At each step, each vertex becomes infected if :

proportion of its infected neighbors > q

Heuristically...

The random graph G(n, d) converges locally to a random tree such that :

$$\mathbb{P}\left(r-1 \text{ children}\right) = rp_r/\lambda$$



Infected nodes = those with degree < 1/q

Infinite tree (of infected nodes)

$$\iff \sum_{r<1/q} (r-1) \frac{rp_r}{\lambda} > 1$$

4□ > 4₫ > 4½ > ½
 9

$$q_c := q_c(oldsymbol{p}) = \sup\left\{q' : \sum_{r < 1/q'} (r-1) rac{rp_r}{\lambda} > 1
ight\}$$

Fixed q, $\mathcal{P}^{(n)} = \text{set of pivotal players in } \tilde{G}(n, \mathbf{d}, \gamma)$:

- G_0 = induced subgraph with vertices of degree < 1/q
- ullet Pivotal players = vertices in the largest connected component of G_0

Theorem (CONTAGION THRESHOLD)

- $q < q_c : |\mathcal{P}^{(n)}| = \Theta_p(n)$ Each pivotal player can trigger a global cascade.
- $q > q_c$: the size of the epidemic generated by a vertex u (chosen uniformly at random) is negligeable: $o_p(n)$.

- At the beginning, one infected vertex (= the seed of the epidemic)
- At each step, each vertex becomes infected if :

INITIAL GRAPH	GRAPH WITH CLIQUES

- At the beginning, one infected vertex (= the seed of the epidemic)
- At each step, each vertex becomes infected if :

INITIAL GRAPH	GRAPH WITH CLIQUES

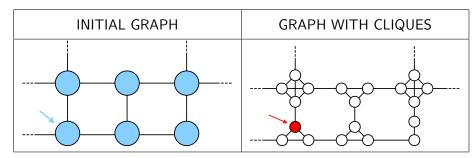
- At the beginning, one infected vertex (= the seed of the epidemic)
- At each step, each vertex becomes infected if :

INITIAL GRAPH	GRAPH WITH CLIQUES

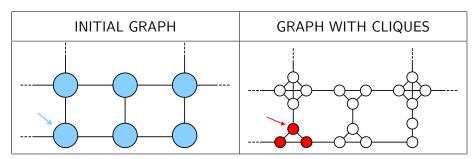
- At the beginning, one infected vertex (= the seed of the epidemic)
- At each step, each vertex becomes infected if :

INITIAL GRAPH	GRAPH WITH CLIQUES

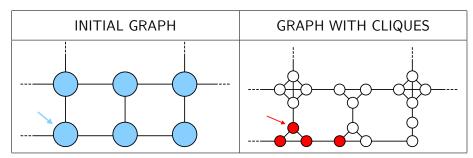
- At the beginning, one infected vertex (= the seed of the epidemic)
- At each step, each vertex becomes infected if :



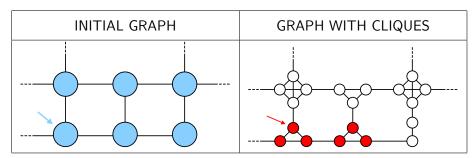
- At the beginning, one infected vertex (= the seed of the epidemic)
- At each step, each vertex becomes infected if :



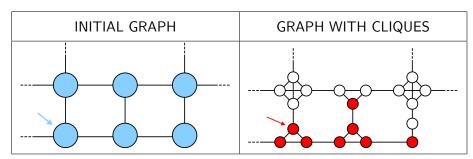
- At the beginning, one infected vertex (= the seed of the epidemic)
- At each step, each vertex becomes infected if :



- At the beginning, one infected vertex (= the seed of the epidemic)
- At each step, each vertex becomes infected if :

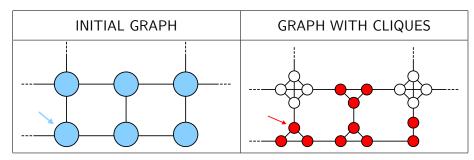


- At the beginning, one infected vertex (= the seed of the epidemic)
- At each step, each vertex becomes infected if :



- At the beginning, one infected vertex (= the seed of the epidemic)
- At each step, each vertex becomes infected if :

proportion of its infected neighbors $>q=\frac{1}{4}$

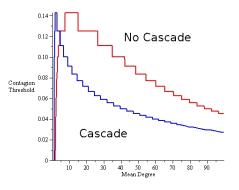


 \implies Clustering decreases the cascade size.

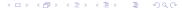
Contagion Threshold (q_c) vs Mean Degree

Graphs with the SAME asymptotic degree distribution :

$$\tilde{p}_k \propto k^{-\tau} e^{-k/50}$$



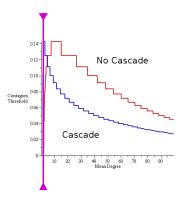
- Graph with clustering (cliques)
- Graph with no clustering



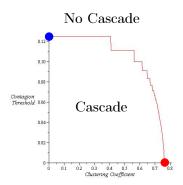
Effect of Clustering on the Contagion Threshold

Asymptotic degree distribution :

$$\tilde{p}_k \propto k^{-\tau} e^{-k/50}$$



Mean degree $\tilde{\lambda} \approx 1.65$

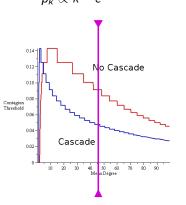


- Graph with maximal clustering coefficient
- Graph with no clustering

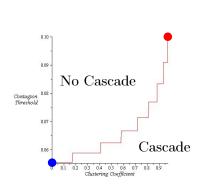
- 《 ㅁ 》 《 @ 》 《 돌 》 《 돌 》 의 Q (C)

Effect of Clustering on the Contagion Threshold

Asymptotic degree distribution : $\tilde{p}_{\nu} \propto k^{-\tau} e^{-k/50}$



Mean degree $\tilde{\lambda}\approx 46$

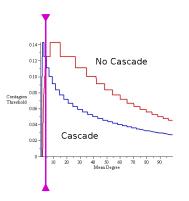


- Graph with maximal clustering coefficient
- Graph with no clustering

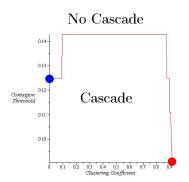
Effect of Clustering on the Contagion Threshold

Asymptotic degree distribution :

$$\tilde{p}_k \propto k^{-\tau} e^{-k/50}$$



Mean degree $\tilde{\lambda} \approx 3.22$



- Graph with maximal clustering coefficient
- Graph with no clustering

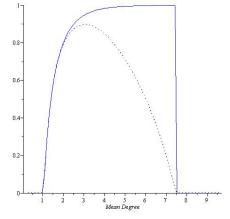
- 4 ロ ト 4 趣 ト 4 恵 ト 4 恵 ト - 恵 - 夕 Q (^)

Fraction of infected neighbors needed to become infected :

$$q = 0.15$$
 (fixed)

$$\bullet \ \tilde{p}_r = \frac{0.2r + 0.8}{0.2\lambda + 0.8} \frac{e^{-\lambda}\lambda^r}{r!}$$

•
$$C = 0$$



- · · · Pivotal players in the graph with no clustering
- Cascade size in the graph with no clustering

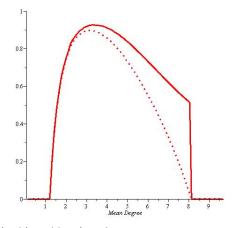
◄□▶ ◀圖▶ ◀불▶ ◀불▶ 불 ∽Q҈

Fraction of infected neighbors needed to become infected :

$$q = 0.15$$
 (fixed)

$$\bullet \ \tilde{p}_r = \frac{0.2r + 0.8}{0.2\lambda + 0.8} \frac{e^{-\lambda}\lambda^r}{r!}$$

•
$$C = \frac{0.2\lambda}{0.2\lambda + 1.2} > 0$$

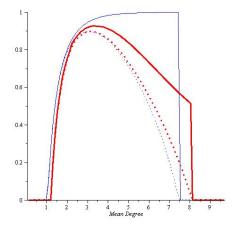


- · · · Pivotal players in the graph with positive clustering
- Cascade size in the graph with positive clustering

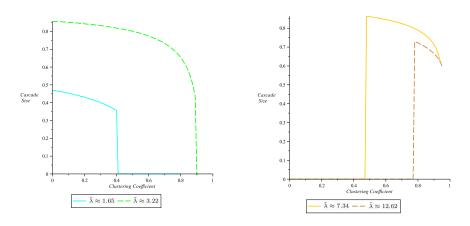
- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - かりの

Fraction of infected neighbors needed to become infected :

$$q = 0.15$$
 (fixed)



- ··· Pivotal players in the graph with no clustering
- Cascade size in the graph with no clustering
- · · · Pivotal players in the graph with positive clustering
- Cascade size in the graph with positive clustering



Asymptotic degree distribution : $\tilde{p}_k \propto k^{-\tau} e^{-k/50}$

Conclusion

- Model of random graphs with a given degree distribution, and a tunable clustering coefficient
- Effect of clustering on the diffusion model :
 - Clustering increases the diffusion threshold
 - Clustering decreases the cascade size
- Effect of clustering on the contagion model :
 - Clustering decreases the contagion threshold for low values of the mean degree, while the opposite happens in the high values regime
 - Clustering decreases the cascade size (when a cascade is possible)

Conclusion

- Model of random graphs with a given degree distribution, and a tunable clustering coefficient
- Effect of clustering on the diffusion model :
 - Clustering increases the diffusion threshold
 - Clustering decreases the cascade size
- Effect of clustering on the contagion model :
 - Clustering decreases the contagion threshold for low values of the mean degree, while the opposite happens in the high values regime
 - Clustering decreases the cascade size (when a cascade is possible)

Thanks for your attention!

References

T. Britton, M. Deijfen, A. N. Lagerås, and M. Lindholm.

Epidemics on random graphs with tunable clustering. J. Appl. Probab., 45(3):743–756, 2008.

A. Hackett, S. Melnik, and J. P. Gleeson.

Cascades on a class of clustered random networks. Physical Review E, 83, 2011.

M. Lelarge.

Diffusion and cascading behavior in random networks. under revision for Games and Economic Behavior, arxiv/0805.3155, 2009.

M. E. J. Newman.

Properties of highly clustered networks. Phys. Rev. E, 68(2):026121, Aug 2003.

P. Trapman.

On analytical approaches to epidemics on networks. Theoretical Population Biology, 71(2):160-173, 2007.

D. J. Watts and S. H. Strogatz.

Collective dynamics of 'small-world' networks. Nature. 393(6684):440–442. June 1998.