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Two types of epidemic models :

|. Diffusion (classical SI model)

II. Contagion (from Game Theory)

|. DIFFUSION model, with transmission parameter 7 € (0,1) :

SEED of the epidemic
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Two types of epidemic models :

|. Diffusion (classical SI model)

II. Contagion (from Game Theory)

|. DIFFUSION model, with transmission parameter 7 € (0,1) :

DIFFUSION MODEL BOND PERCOLATION

Infected nodes Connected component
at the end & of the seed in the
of the epidemic bond percolated graph
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Two types of epidemic models :

|. Diffusion (classical SI model)

II. Contagion (from Game Theory)

|. DIFFUSION model, with transmission parameter 7 € (0,1) :

DIFFUSION MODEL BOND PERCOLATION

Infected nodes Connected component
at the end & of the seed in the
of the epidemic bond percolated graph

Each infected neighbor can transmit the epidemic independently.
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Introduction : Social Networks and Epidemics

[I. Game-theoretic CONTAGION model on a given graph G = (V, E),
with parameter g € (0,1/2) :

Two possible choices : &)\L (4> susceptible) or SK/pS) (> infected)

)}

VD

Initially : all use &L)\i , except one who uses ST
Possible switch &Q\L — SUF | but no switch SKVDES 4 ﬁ

)

Situation | Payoff (for both users)

q

Total payoff

T I e | _g>q = sum of payoffs from
: all your neighbors
skype &9‘\ 0

ﬁ skvpe |Neighbors using Skype|
W to = [Neighbors| >q.
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Introduction : Social Networks and Epidemics

Infinite deterministic graph G = (V, E)

gsmall =

q higher = NO cascade

Parameter g varies :

More precisely :
g1 > @, cascade for g; = cascade for ¢,

Contagion threshold qE_.G) ‘= sup { q ‘ CASCADE in G for parameter q}

threshold q(CG)

7 >
CASCADE NO cascade
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Introduction : Social Networks and Epidemics

. ST . .
Switch from ﬁ to ST - |Ne'gh|b|\<|>:gt£2rgs|5kype| >q

Example : G = d-regular tree

g>1/d = NO cascade (G)
g<1l/d = CASCADE
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Introduction : Social Networks and Epidemics

Switch from &é to é@@ PR |Ne'gh|b,\7;sgﬁsb'2rgs|5kype| >q

Example : G = d-regular tree

g>1/d = NO cascade (G)
g<1/d = CASCADE
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Introduction : Social Networks and Epidemics

Define a model of finite random graphs (whose size tends to infinity)

@ having (asymptotically) the observed properties :
» scale-free networks < power law degree distribution
i.e. there exists 7 > 0 such that, for all k >0, px o k=7
(small number of nodes having a large number of edges)

» networks with clustering

(“The friends of my friends are my friends”, Newman, '03)

@ tractable
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Introduction : Social Networks and Epidemics

Epidemic models on finite random graphs :

Final nb of infected nodes negligeable or not / population size ?

G, = random graph of size n
S, = final size of the epidemic in G,

CASCADE if S, = ©,(n),

NO cascade if S, = op(n).
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Introduction : Social Networks and Epidemics

Epidemic models on finite random graphs :

Final nb of infected nodes negligeable or not / population size ?

DIFFUSION MODEL CONTAGION MODEL
Ref. Bond percolation Morris, Watts
Para- | 7 = probability that an edge A vertex is infected &
-meter transmits the epidemic fraction of infected neighbors > ¢
T 1—m
3<q i>9
threshold 7. threshold g,
I 7 T I 7 4
NO cascade NO cascade
Effect of clustering on these thresholds and on the cascade size
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© Random Graph Model
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Random Graph Model

(i) Start from a uniform graph with given vertex degrees
(i) Add clustering

(i) Original graph (with given vertex degrees) :

@ ne NN, d = (d;)] sequence of non-negative integers
(s.t. 3 a graph with n vertices and degree sequence d).

@ G (n,d) = uniform random graph (among the graphs
with n vertices and degree sequence d).

de .

3 dQ C/n:5

Ref. : (Lelarge,'11) for the study of contagion and diffusion models on

graphs with given vertex degrees
Coupechoux - Lelarge (INRIA-ENS) Epidemics in Random Networks
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Random Graph Model

(i) Start from a uniform graph with given vertex degrees
(i) Add clustering J
(i) Original graph (with given vertex degrees) : ]

@ ne NN, d = (d;)] sequence of non-negative integers
(s.t. 3 a graph with n vertices and degree sequence d).

@ G (n,d) = uniform random graph (among the graphs
with n vertices and degree sequence d).

Condition : Assume there exists a probability distribution p = (p,)2, such that :
(i) #{i:di=r}/n— pras n— oo, for every r >0
(i) A=, ror € (0;00)
(i) 32 di = O(n)
Ref. : (Lelarge,'11) for the study of contagion and diffusion models on

graphs with given vertex degrees
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Random Graph Model

(i) Clustering Coefficient of G = (V,E) : J

C(6) := probability that two vertices share an edge together,
knowing that they have a common neighbor

6 _ 3 x nb of triangles > P,
~ nb of connected triples >Ny

P, := nb of pairs of neighbors of v sharing an edge together,
N, := nb of pairs of neighbors of v : N, = d,(d, — 1)/2.

Example : N, =3

P, =0 P, =2 P, =3
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Random Graph Model

@ Idea : Replace a vertex of degree r in G (n,d) by a clique of size r :

it
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@ Idea : Replace a vertex of degree r in G (n,d) by a clique of size r.
e Adding cliques randomly : Let v € [0,1].
Each vertex is replaced by a clique with probability v (independently
for all vertices).

Bk oay

e G (n,d,~) = resulting random graph (with additional cliques)
Similar model : (Trapman,’07), (Gleeson, 09)

e Particular cases :
> y=0= G(nd,y)=G(nd),
» v=1 = all vertices in G (n, d) have been replaced by cliques.

e New asymptotic degree distribution p = (Px)k>0
@ Asymptotic clustering coefficient C > 0
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First Epidemic Model : Diffusion
Outline

© First Epidemic Model : Diffusion
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First Epidemic Model : Diffusion

Diffusion model with a given probability m of transmission, on the
(random) graph G (n,d,~) :
@ At the beginning, activate a given vertex (= the seed of the epidemic)

@ Transmit the epidemic through any edge with probability =

INITIAL GRAPH GRAPH WITH CLIQUES

NP

o4

N N4
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First Epidemic Model : Diffusion

Diffusion model with a given probability m of transmission, on the
(random) graph G (n,d,~) :
@ At the beginning, activate a given vertex (= the seed of the epidemic)

@ Transmit the epidemic through any edge with probability =

INITIAL GRAPH GRAPH WITH CLIQUES
O—o0—0O
O | 5

Connected component of the seed
in the bond percolated graph
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First Epidemic Model : Diffusion

Theorem (DIFFUSION THRESHOLD)

Let 7. be the solution of the equation : |7/ = % ,

where D,/ is a random variable with a given distribution that depends on
p, v and 7’.

@ 7 > m. : There exists whp a giant component in the percolated graph,
i.e. a single node can trigger a global cascade.

@ 7 < mc : The size of the epidemic generated by a vertex u (chosen
uniformly at random) is negligeable : op(n).
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First Epidemic Model : Diffusion

Diffusion Threshold 7. vs Clustering
(in random d-regular graphs)

Clustering
i

g
B
g
b
k|
H
3

Threshold 0-37

P S
0.1
0 01 02 03 04 05 06 07 08 09
Clustering Cocffcient
[Fr=d3 a6 d=10—— d=20]
2 April 2012
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Second Epidemic Model : Contagion
Outline

@ Second Epidemic Model : Contagion
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Contagion model with parameter q :

@ At the beginning, one infected vertex (= the seed of the epidemic)

@ At each step, each vertex becomes infected if :

’proportion of its infected neighbors > q‘

Heuristically...

The random graph G (n, d) converges locally to a random tree such that :

P (r — 1 children) = rp, /A
Infected nodes = those with degree < 1/q

Infinite tree (of infected nodes)
rpr
= > (r-1) >l
1 r<l/q
a=1
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Second Epidemic Model : Contagion

._ _ _ Py
dc = qc(p) = sup {q’ DD (e 1)T > 1} J

Fixed g, P(" = set of pivotal players in @(n, d,v):
e Go = induced subgraph with vertices of degree < 1/q

@ Pivotal players = vertices in the largest connected component of Gy

Theorem (CONTAGION THRESHOLD)
® g <qc: P =06,n)
Each pivotal player can trigger a global cascade.

@ g > g : the size of the epidemic generated by a vertex u (chosen
uniformly at random) is negligeable : op(n).
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Second Epidemic Model : Contagion

Contagion model with parameter q :

@ At the beginning, one infected vertex (= the seed of the epidemic)

@ At each step, each vertex becomes infected if :

proportion of its infected neighbors > ¢ = ;

INITIAL GRAPH GRAPH WITH CLIQUES

SN

NN 4
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Second Epidemic Model : Contagion

Contagion model with parameter q :

@ At the beginning, one infected vertex (= the seed of the epidemic)

@ At each step, each vertex becomes infected if :

proportion of its infected neighbors > ¢ = ;

INITIAL GRAPH GRAPH WITH CLIQUES
O—O—O—|
~
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Contagion Threshold (g.) vs Mean Degree

Graphs with the SAME asymptotic degree distribution :
Pr o k—Te—k/50

014
012 No Cascade
0104

Contagion |

Threshold
008+
004
- Cascade

0 T T T T T T T T
W 0 W 4 0 & 0 w90
Mean Degree

— Graph with clustering (cliques)
— Graph with no clustering
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Second Epidemic Model : Contagion

Effect of Clustering on the Contagion Threshold

Asymptotic degree distribution :

~ —7 ,—k/50
Pr ox k—Te~k/
\ 4
0144
0124 No Cascade
0104
00z
Contagion
Threshold
006
0044
woal Cascade
o T T T T T T T T T
10 0 30 a0 50 a0 70 20 90
MeanDegres
A

— Graph with maximal clustering coefficient
— Graph with no clustering
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No Cascade

010

008

Contagion
Threshald 006+

Cascade

004

00z

———————
01 02 03 04 03 06 07 08
Clustering Coefficient
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Effect of Clustering on the Contagion Threshold

Asymptotic degree distribution :

~ —7 ,—k/50 Y
P oc k=Te K/ Mean degree A ~ 46
A 4
0144 0.10
0124 o Cascade
0104 0.09
No Cascade
Threshold Copagion 008
106 Threskold
0044 \_H_\_‘_H—\
0.07
woal Cascade
I A Cascade
MefnDegres
a1l 02 03 04 05 06 07 08 09
A Clustering Coefficient

— Graph with maximal clustering coefficient
— Graph with no clustering
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Second Epidemic Model : Contagion

Effect of Clustering on the Contagion Threshold

Asymptotic degree distribution :

~ —7 ,—k/50
Pr ox k—Te~k/
0141
0124 No Cascade
0104
00z
Contagion
Threshold
006
0044
woal Cascade
o T T T T T T T T T
10 0 30 a0 50 a0 70 20 90
MeanDegres
A

— Graph with maximal clustering coefficient
— Graph with no clustering
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Effect of Clustering on the Cascade Size

Fraction of infected neighbors needed
to become infected :

g = 0.15 (fixed)

~ _ 0.2r+0.8 e= A\
® Pr=92xr08 ol

e C=0

1 2 E 4 5 6 7 H El
Mean Degree

-+ Pivotal players in the graph with no clustering

— Cascade size in the graph with no clustering
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Second Epidemic Model : Contagion

Effect of Clustering on the Cascade Size

Fraction of infected neighbors needed
to become infected :

g = 0.15 (fixed)

4 5 [
Mean Degras

Pivotal players in the graph with positive clustering

— Cascade size in the graph with positive clustering
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Effect of Clustering on the Cascade Size

fi

03+
Fraction of infected neighbors needed
to become infected :

q = 0.15 (fixed) "1

04+

0z

1 2 El 4 5 [ 7 2 9
Mean Degras

- Pivotal players in the graph with no clustering
— Cascade size in the graph with no clustering
- Pivotal players in the graph with positive clustering

— Cascade size in the graph with positive clustering
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Second Epidemic Model : Contagion

Effect of Clustering on the Cascade Size

08 T~ 08
S~
~ ~
07 N 07 [N N
\ | N
\ | \
06 \ 06 |
\ I
05 \\ 054 |
Cascade \ Cascade !
Size g4 | Size g4 :
! |
034 | 03 |
! I
4 |
02 I 024 :
01 : |
014 |
' |
0 T T T T - 1 |
0 02 04 6 08 1 0 T T — T !
Clustering Coefficient 0 02 06 08 1

0 X
Clustering Coefficient

— A~ 165 —— Am322

Asymptotic degree distribution : py oc k—7e /50

u]
o)
I

i
it
)
»
?)
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Second Epidemic Model : Contagion

Conclusion

@ Model of random graphs with a given degree distribution, and a
tunable clustering coefficient

o Effect of clustering on the diffusion model :

» Clustering increases the diffusion threshold

» Clustering decreases the cascade size

o Effect of clustering on the contagion model :

» Clustering decreases the contagion threshold for low values of the mean
degree, while the opposite happens in the high values regime

» Clustering decreases the cascade size (when a cascade is possible)
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Conclusion

@ Model of random graphs with a given degree distribution, and a
tunable clustering coefficient
o Effect of clustering on the diffusion model :

» Clustering increases the diffusion threshold

» Clustering decreases the cascade size

o Effect of clustering on the contagion model :

» Clustering decreases the contagion threshold for low values of the mean
degree, while the opposite happens in the high values regime

» Clustering decreases the cascade size (when a cascade is possible)

Thanks for your attention !
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