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Abstract—This paper focuses on the Internetip-level routing  knowing the real Internet topology. Therefore, we relied on
topology and proposes relevant explanations to its apparent simulations to identify the factors behind these behaviors
dynamics. We first represent this topology as a power-law random and to study their influence. We proposed a model whose

graph. Then, we incorporate to the graph two well known - | | ¢ Thi del ts the lat
factors responsible for the observed dynamics, which are load main goal was explanatory. [his model represents the iatern

balancing and route evolution. Finally, we simulate on the graph |P-level routing topology as an Edd-Renyi random graph
tracer out e-like measurements. Repeating the process many G = (V,E) where vertices correspond t®@ addresses and
times, we obtain several graph instances that we use to modeledges correspond to the-level connectivity or links between
the dynamics. Our results show_that we are able to capture two 1P addresses. Then, it incorporates Gnwell known

on power-law graphs the dynamic behaviors observed on the - . . .

Internet. We find that the results on power-law graphs, while aPpare”_t dY”am'C factors: load-balancing and route ewolut
qualitatively similar to the one of Erdds-Renyi random graphs, Finally, it simulates Internet measurements @rto create a
highly differ quantitatively; for instance, the rate of discovery of routing tree. This process is repeated many times to create
new nodes in power-law graphs is extremely low compared to several routing trees that we use to analyze the dynamics.
the rate in Erdos-Renyi graphs. From this work, we learn that it is possible to reproduce on
Erdos-Renyi graphs the dynamic behaviors observed on the
Internet.

The Internet is a living system that evolves in time. Ev- This paper goes further and studies the dynamic behaviors
eryday, many nodes and links are added or removed, during using power-law random graphs to model the routing
planned maintenance or because of unexpected network fabology. With Erds-Renyi random graphs, we made no
ures. It is important to map the Internet topology, in paific  supposition on the underlying topology. Here, we use a graph
when designing future network protocols which can be hard ¢ith a power-law degree distribution. Indeed, Faloutsod an
test on the real Internet. It is equally or even more impdrtaal. [11] have shown that power-law graphs may be close to
to understand its dynamics. This can be very helpful forrituthe Internet topology in term of their degree sequence, so
protocols or new types of applications to make use of itaey may well approximate its structure. We first ask the same
evolving nature. questions as in the analysis with BedRenyi graphs: (1) can

Study of the dynamics of the Internet topology hage reproduce the dynamics behaviors on power-law graphs ?
been tackled both by analyzing the dynamics of individuaind (2) how does the dynamic behavior depend on various
routes [1], [2], [3], [4] and from a more global perspectivesimulation parameters ? Then, we investigate the differenc
mainly at theAas- or Ip-level [5], [6], [7], [8], [9]. In addition, of results that appear for Edd-Renyi and power-law graphs.
routing changes that happen at tirelevel topology does not  The rest of the paper is organized as follows. In Section II,
necessarily imply changes at the physical level vicd-versa we describe two characteristics of the dynamics ofithievel
This paper focuses on the-level routing topology and asks routing topology around a single monitor. Section Il prese
the question of how it evolves over time. Instead of indigdu the simulation model. In Section IV, we analyze the results
routes, we study &ree of 1P-level routes from one monitor to of our experiments. Finally, Section V discusses someedélat
a fixed set of destinations in the Internet. works, and Section VI presents our conclusions.

In our previous work, we already analyzed the dynamic
of the 1p-level routing topology discovered around a single
node [10]. Using & r acer out e-like measurement tool, we In our previous work [10], we already presented two main
periodically probed the route to several destinations femmcharacteristics of the dynamics of threlevel routing topology
single monitor in the Internet. This results in a series a@fround a given monitor. To perform this study, we needed sev-
routing trees which represent differergo-centeredviews eral snapshots of the routing topology between the monitor
of the routing topology around the monitor. Analyzing thesand a given set of destinations. We useacetr ee [12]
trees, two dynamic behaviors were apparent. In particular, which is at r acer out e-like measurement tool that aims at
observed that we never stop discovering nevaddresses over discovering a tree of routes or routing paths with the manito
time. It is hard to understand the observed dynamics withaag the root and the destinations as the leaves. The inteargedi

I. INTRODUCTION

II. IP-LEVEL ROUTING TOPOLOGY DYNAMICS
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Fig. 1. Properties of the observed dynamics.

nodes of the tree are the addresses found on the routinghe correlation between these two quantities for the monito
path for each pair (monitor, destination). The size of a tseewool t hor pe. The plot exhibits a clear parabolic shape, with
then the number of all its nodes (intermediary nodes plus thelarge number of points close to tleaxis and to the line
monitor and destination nodes). The link between two nodgs= x/2. This can be explained in the following way. The
represents a hop at the level. One routing tree represents gresence a large number 16f addresses close to the parabola
subset of thepP-level routing topology between the monitorcan be explained by load-balancing routers. If a load-twatan
and the destinations. It is called ayo-centeredview of router randomly spreads traffic amokgpaths', each router
this topology. Repeating manyr acet r ee measurements belonging to any of these paths has a probabifity- 1/k
periodically gives a set of routing trees that one can use @b being observed at each round, leading to an observation
analyze the dynamics. Each measurement round lasts abuunber equal tap approximately. A given round is then the
4 min and the frequency between a pair of rounds is aboiitst of a consecutive block of observations for one of these
15 min. Different datasets were collected from many monitor®uters with the probability that this router was observed in
around the world (almost 150 monitors, mostly on PlanetLaH)is round, multiplied by the probability 4 p that it was not
and are publicly available [13]. observed in the previous round. Multiplying this probaili

Analyzing these datasets, two main dynamic charactesistisy r gives the expected block number, which is then equal
came out: (1) newp addresses are persistently discovered rp(1— p) and is the equation of the parabola. This is a
around the monitor, (2) the pattern of occurrenceipfad- simplification of the real case in which a router may belong
dresses (number of occurrence/observation, and numbergoopaths used by several load balancers, themselves begpngi
blocks of consecutive observation) follows a parabolicpgha to paths used by other load balancers. In practice? address
Here, we present these characteristics for two of our mmnitdelonging to load-balanced paths can have any probalgi)ity
which arewool t hor pe and ovh [10]. All other monitors 0< p< 1, of being observed. The setiefaddresses closed to
exhibit similar results. The collection amol t hor pe started the x-axis are often observed on consecutive rounds. Finally,
in December, 2010 and ended in June, 2011 af0@destina- points on the liney = x/2 correspond top addresses that are
tions were used. The monitavh only used 500 destinationsobserved only during a finite part of the measurement and have
with a higher measurement frequency. It was collected fromprobability of p=1/2 of being observed during that time,
October, 2010 to September 2011. due to load balancing.

a) NewIpP addresses are persistently discovered around
the monitor: Given a set of routing tre€g, Ty, ..., T;, we com-
puted the cumulative unio; = UT,,1 < k <i. Fig.1(a) plots ~ We use the same simulation model we have already pro-
the size of all set€; as a function of time fomool t hor pe  Posed in [10], which incorporates the routing topology, its
andovh. We observe that new addresses are discovered alynamics and the racet r ee measurements. This model
a fast rate. In other terms, we never stop discovering rrew does not aim at being realistic. Its main purpose is to erplai
addresses between the monitor and the destinations over tifi€ previous dynamic characteristics observed on ebe-
b) The pattern of occurrence o addresses follows a centeredview around a monitor (see Section II).

parabolic shape: We defined two values that quantify the We represent thee-level routing topology of the Internet by
occurrence ofp addresses around a monitor. First, tieser- an undirected grap@ = (V, E). Each vertex iV corresponds
vation numberof an 1P address represents the total of distind® an 1P address and each edge E corresponds to the
rounds in which it occurs. Secondly, tiock numberof an connectivity between twap addresses. Then, we simulate
Ip address is the number of groups of consecutive roundstihacet r ee measurements i. As a preliminary step, we
which it is observed. As an example’ an IP address WhiCh was 11t has been shown [14] that per-packet or per-flow load-twiteyrouters
observed on rounds,2,3,5,6,8,9 and 11 has an Observat'onspread r acer out e probes equally among all paths to the destination, which
number of 8 and a block number of 4. Fig. 1(b) presenisroughly equivalent to randomly choosing a path.

IIl. M ODEL
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Fig. 2. Analyzing the impact of simulation parametersRingraphs (= 500,000).

randomly choose one node as the monitor @hdodes as PL graph withn=500,000 anda = 2.3, for varying values of
the destinations. Then fror®, we inferred a routing tre& s. For this first step, we adopt the same number of destinations
with the monitor as the root, and the destinations as leaves.in our measurementd £ 3,000).
In practice, we simply perform &areadth-first searchBFS Three main observations appear from Fig. 2(a). First, it is
starting from the monitor, and then discard all branches thgossible to reproduce oRL graphs the fast discovery of
do not lead to the destinations. addresses observed on ouracetree data, in particular
At this point, we have a routing tree shortest pathsrom for s= 1,000 or s= 10,000 swaps. Second, the larger the
the monitor to the destinations. The next step is to repa@imber of swaps, the faster new nodes are discovered. In
this procedurer times to simulater measurement rounds.fact, routing paths change more quickly with a larger number
We simulate load-balancing by @ndom BFS We model of swaps €.g, for s= 100000), than with a lower number
route evolution using link rewiring, oswap This consists in of swaps €.g, for s= 10). Recall that we use edge swaps
choosing uniformly at random two link&,v) and(x,y)2 and to simulate link changes due to route evolution. Therefore,
swap their extremitied,e. replace them byu,y) and (x,v).  increasing the number of swaps also naturally increases the
Our previous work [10] used the Eyd-Renyi random graph probability for routes between the source and the destinsti
model [15] to produces. Here, we use a random graph withto change, which leads to the fast discovery of new nodes.
a power-law degree distribution [16]. For power-law grapfThird, the first point of all curves are very close. This means
generation, we use the following procedure : (1) given ahat the number of swaps have no influence on the size of
exponenta, randomly generate a list of degrees that respegisuting trees, which was expected.
the following power law [17] 4 is a degree valuef(d) the  Fors=0 swaps, the curve has a fast initial growth, and then
frequency ofd): it remains flat until the last round. In the absence of swayss, t
f(d)=d % a >0, @) only dynamic observed comes frolmad balancingand not
from route evolution. All nodes that belong to load-balaugci
(2) for each node, create as many half links as the valueralting paths are quickly discovered at the beginning.
its degree, (3) randomly sort the previous list and, (4) eshn  We never succeed in discovering all nodes Rir graphs,
consecutive half links to form links. even when we swap almost all their links at each round.
For instance, using = 1,000,000 swaps leads to the quick

IV. SIMULATION RESULTS . . .
, o , L , revealing of only 60% of the nodes in the graph in less than
This section investigates whether it is possible to reptr:edul’OOO rounds. In the next section, we explore in depth the
on power-law PL) graphs the dynamic behaviors observepeasons behind this.

on the Internet. We perform several simulgtions with défer We also test the impact of the number of destinations on
values of the parameters of the model which are . the numtgﬁé dynamic behaviors. Fig. 2(b) shows the results on a graph
n of nodes, the exponent, the numbersl of destinationss of with n = 500,000, a = 2.3 ands— 1,000 swaps. We observe
swaphs pf:,\r/ rofunt?] an;m 0; I;nks f?rt_Ercbsb- I?nyl (Et? rar_ndo&_ that the number of destinations clearly has an influence on
grapns. Ve further look for refations between the simulatiqy, . height of the first point of the curves, which represents
parameters that may lead to invariants of the dynamic beh?ﬁé size of the first routing tree. The larger the number of
iors, and explore the differences in the simulation reswith destinations, the higher the first point of the curvies, the

PL andER graphs. larger routing tree. Also, for different numbers of dedtimas,
A. Reproducing the evolution of addresses discovery the slope of all curves are very similar, but not exactly
Let us first focus on the evolution of the discovery of new dentical. For instance, one may assume that doubling the

addresses over time. As a preliminary step, we vary the numBsmber of destinations(g, from 1% to 2%), we also double

s of edge swaps. Fig. 2(a) presents the simulation results ofl'§ Size of the resulting routing trees. However, for thi9eo
true, two conditions need to be verified: (1) all destination

2We choose them such that the four nodes are distinct. should be on strictly different routing paths from the monit
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(2) and all destinations should be chosen at the same déstadestinations to 1%. We vary ands. Fig. 4 presents the results
from the monitor. This is not the case in our experiments. of the simulation on graphs af = 500,000 nodes, witha =
Finally, we vary the exponentr of PL random graphs. 2.1 and 23, for s=500 and 250 swaps. It seems that when the
Fig. 2(c) presents the simulation results on a graph wittumber of links doubles, the number of swaps also needs to be
n = 500,000, s= 1,000 andd = 3,000, for various values doubled as well in order to obtain curves with similar slopes
of the parameterr. Note that, the value of the exponentThis result also tends to confirm our previous observatian th
a determines the numben of links for PL graphs. From simulations with the same rati§ may follow a similar slope
Fig. 2(c), it appears that the lower the valueoofor the higher for node discovery. Sometimes, some abrupt increases may
the numbem of links), the slower the rate of discovering newdeviate a curve from its initial growth rate.g, the casen =
nodes over time. Indeed, the proportion of links affected 1 ands= 500 for d = 1%). We find that these events are
swaps are negligible on graphs with a high number of links. traused by swaps that happen close to the monitor and therefor
addition, distances between pairs of nodes are highly estiuenay affect a high number of paths to destinations. However,
on graphs with a high number of links. Indeed, the closéhese events usually do not change the slope of curves.
the destinations are to the source, the shortest are the pathThese results are interesting because they imply that know-
between the source and the destinations. Therefore, |@8s ey the trend of the evolution curve for a given graph and for
nodes will be discovered over time. a given value of swaps, it can be possible to infer the slope

B. Finding relations between simulation parameters for a range of other graphs. During our experiments, we have
tested the previous two relations for other sizes of graplas a

To analyze the interaction between the simulation parame-. . .
. obtained the same conclusions. These analyses are at a very
ters, we vary several of them at the same time. The goal here

. S . . eliminary stage. We visually observe the similaritiesmen
is to find invariants which can be very helpful to understa .

. ifferent curves for various parametersRif graphs. Later, we
our model in depth.

The first relation we explore is between the size of the gragﬁay need some statistical analysis to confirm our conclgsion

and the number of swaps. We set= 2.3 andd = 5. The
value of a are chosen so that the rati = 2 is verified.
Fig. 3 presents the simulation results on two graphs of idiffe
sizesn = 50,000 and 500000, for different values of swaps We now turn to the correlation between the observation
s=500 and 50. Theg-axis on Fig. 3 represents the fractiomumbers and the block numbers. Fig. 5 illustrates our result
of discovered nodes over the total of nodes, andxtais, on aPL graph withn = 500,000, a = 2.3 andd = 3,000,
the number of rounds. We observe that the two middle curvis various values o. We are clearly able to reproduce the
are very close and almost follow the same slope. It appesgarabola observed on our acet r ee data (for instance, for
that these curves correspond to graphs with a similar gatios= 50 and 100). In that particular case, we also observe that
of the number of swaps over the number of links. a large number of points are close to tk@axis. Fors=0

The second relation concerns the number of links and theaps, all points strictly appear on the parabola. We ajread
number of swaps. Here, we fix, and set the proportion of know that without swaps, the only dynamic factor in our model

C. Reproducing the parabolic shape on the occurrencer of
addresses
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D. Exploring the differences between PL and ER graphs Fig. 9. Comparison betweeBR and PL graphs with the same average

The evolution of node discovery dPL and ER graphs are 42"¢® = 500.000.d=3,000)
very different. Fig. 6 shows that the majority of nodes of an
ER graph, withn = 500,000, m= 1,000,000 andd = 3,000, of the reducedL graph grows more slowly than the curve of
are discovered withim = 5,000 rounds with onlys= 1,000 theERgraph, but similarly as the one of the origiriil graph.
swaps. Using the same amount of swaps ofPlagraph This means that nodes of degree 1 are not the reasons behind
with approximately the same size and the same numbertBe slow evolution. Increasing the number of swaps until we
destinations, we end up discovering only 12% of all its nodeach the deprecated case where a maximum is reached for the
Clearly, nodes are discovered more slowly over timeRin original PL graph in Fig. 7, we end up discovering the majority
graphs than oilER graphs. In this last set of experiments, w@f nodes of the reducelL graph. This confirms the fact that
investigate the reasons that explain this difference. the flat phase ofPL graphs are due to the non-discovery of

Our first intuition concerns nodes of degree one. Thdélegree-1 nodes.
represent the largest fraction of nodesRingraphs and, unless Our second intuition concerns the difference in the average
they are chosen as destinations, it is impossible for thebetodistance that exists betwedtL and ER graphs. It has been
discovered during simulations since they are not routeesodproven that the average distance is in the ordelogflog n
From Fig. 2(a), we have seen that even when we swap almostPL graphs [18], while it is ofog n on ER graphs [19]. We
all links on aPL graph withn =500 000 anda = 2.3 at each explore this result in Fig. 8 which plots the average distanc
round, we never succeed in discovering all its nodes. Indeed a function of the number of links for bofAL and ER
with s= 1,000,000 swaps the curve tends to flatten out cloggraphs withn = 500,000 nodes. We use the approximation
to the valuey = 295 877. Examining the remaining nodes, wegroposed in [20] to compute the average distance. It appears
find that 999% of them represent the degree-1 nodes. At thibat average distances are effectively much smallelPin
end, we almost discover no nodes of degree Pargraphs. than inER graphs. This implies that the destination nodes on

We now ask the question whether a reduéddgraph in PL graphs are closer to the monitor; therefore, the resulting
which we have removed every nodes of degree 1 will followouting trees orPL graphs will have fewer nodes. To confirm
the same evolution of node discovery asER graph with the this result, we examine the size of the trees produce&&n
same dimensions; if this is true, then degree-1 nodes maydme PL graphs withn = 500,000 and the same number of
the only reason of the difference of results observedPioand links. We usesd = 3,000 destinations and= 0 swaps. We
ERgraphs. Fig. 6 shows that this is not the case. The reduded that the average size an= 5,000 trees is 563 and
PL graph has onlyy= 293 328 nodes anth= 841 326 links. 12 868 for PL and ER, respectively. We then study in Fig. 9
Therefore, we plot its curves withh = 1,760 to maintain the the evolution of node discovery d?L andER graphs with the
same ratio of the number of destinations over the total oesodsame average distance. We find that they still do not follow
as in the originaPL graph. Withs= 1,000 swaps, the curve the same slope. Finally, this shows that apart from the @egre
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V. RELATED WORK

It has been said that the Internet topology dynamics should
be taken into account in order to produce realistic modelB!
in the future [21], [8]. Many works empirically studied the 2]
dynamics of the Internet topology, mainly by analyzing indi
vidual routes [1], [2], [3], [4] or from a more global persjiee
at theAs or Ip level [5], [6], [7], [8], [9], [10]. Most of them
analyzed thephysical AS topology, while we focus on the
evolution of therouting topology at thelp level. Augustin et 5]
al. [14] found thatload-balancingrouters play an important
role in the observed route dynamics as measured by traeeroufs]
like tools. Cunha et al. [22] proposed a method for measuring
load-balanced routes. [7

On the other hand, other works used topology evolution
models to explain or reproduce the dynamic characteristidgl
observed on the Internet [23], [24], [25], [26]. Park et &6]
studied different evolution models in which nodes and linkg9]
are progressively added over time. His goal was to rank them
according to their capacity to mimic the evolution of thélo]
Internet topology. In our work, we use a model to find the
factors that may explain the dynamic behaviors observed B#l
the 1p-level routing topology around a single node.

(3]
(4]

VI. CONCLUSION [12]

This work focuses of the dynamics behaviors observed at
the Internetip-level routing topology. We use an existingz
model that incorporates a routing topology, its dynamicd an
tracer out e-like measurements to explain the observed4
dynamics. Our former work represents the routing topology
by an Erds-Renyi random graph. Here, we use a power-
law random graph and investigate the effect of its degrée!
distribution on the dynamics. As in Eid-Renyi graphs, we are [16]
able on power-law graphs to reproduce the dynamic behaviors
observed on the Internet. However, we find that the resuﬁ%
between the two types of graphs are quantitatively differen

Two main reasons for this difference appear: (1) it igsg]
difficult to discovered the degree-1 nodes, which repretent
largest fraction of nodes on power-law graphs, (2) the fera g)
distance on power-law graphs are much smaller than fabd=rd [20]
Rényi graphs. Thereforér acer out e-like measurements on
power-law graphs produce smaller routing trees, whichdeag,;
to a slower discovery of new nodes over time.

Future work will proceed in three directions. We first ai
to find other Internet dynamic properties. Second, it will b
interesting to test our model on real topologies or on more
realistic topology models. Indeed, there are many other puf3l
licly availablet r acer out e measurements such as data from
skitter, DIMES or iPlane. Third, we plan to propose a formab4]
analysis of these dynamics. This will help to formally qunt
the role played by the different factors on the dynamics ef tl?25]
Internetip-level routing topology.

22]
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