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Dynamics [ON] and [OF] subway networks

based on two 2011 papers co-authored with
Marc Barthélémy, Michael Batty et Soong Kang

[ON]

“Structure of urban movements :
polycentric activity and
entangled hierarchical flows”

PLoS One, 6(1):e15923

[OF]

“Long-time limit of world subway
networks”

arXiv:1105.5294



Dynamics [ON] subway networks

flows of individuals : proxy for activity and the city’s structure
data : London subway

Oyster card (anonymized) :
→ origin, destination, time

11m trips (1 week) for 2m individuals



Origin-Destination Matrix [ON]

Inflow of station i   =  

Outflow of station i   =  

i

j

= number of rides
from i to j  

→ complete, weighted graph...
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Ride distribution [ON]

Peaked distribution
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Structure of centers [ON]

Activity centers
for each important sink, find a corresponding ‘polycenter’ in the vicinity

rank stations by decreasing flow, group them geographically, stop when the total
inflow reaches a certain value W (here, W = 60%)
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Structure of centers [ON]



Structure of flows [ON]

How are the flows
organized between
sources and
centers/sinks ?

we consider flows from a station to a
center/sink : wiC =

∑
j∈C

wij

we sort them and explore the
changes in the structure when going
down the list

Example map

When going from 20% (gray) of
flow to 40% (red) :

1 largest sources go to
smaller sinks,

2 smaller sources go to
largest sinks.
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The transition matrix T [ON]

W →W + δW

Tij : number of sources such that :

kout = i(W ) → kout = j(W + δW )

Ai : 0→ i > 0
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Structure of flows [ON]

Non-hierarchical
structure

→ mixing of flows of different
orders of magnitude

sources sinks

20%

40%

flow

→ we divide polycenters in three groups
according to their total inflow
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structure
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orders of magnitude
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Dynamics [ON] subway networks

conclusions

spatial features of the rides
consistence of recent results on ride/trip distribution ?

spatial organization of activity
limited number of sources and sinks
organized in a hierarchical polycentric structure
→ the notion of polycenter depends on the scale

spatial organization of flows
iterative scheme
non hierarchical : most important flows always go to the same
centers
⇒ efficiency and congestion : London as a ‘natural’ city (as opposed to

an ‘artificial’, optimized city)
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Dynamics [OF] subway networks
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FIGURE: Percentage of cities with a subway system versus the
population (UN data) [exponential fit : f ∼ 1− exp(−P/P0) with P0 ≈ 3m].



Dynamics [OF] subway networks

specific issues

spatial networks
nodes are located in space
network embedded in a space equipped with some metric...
→ with a ‘cost’ associated to the length of links : a long link must be
compensated by something else (large degree, traffic, etc.)

time evolving
new stations, new lines.
increase of the spatial extension.

network-based measures and tools
typical “scale-free” measures are not immediately relevant
usual measures for planar networks
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Spatial features [OF]



Evolution [OF]
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Evolution [OF]

Some simple properties

City t0 v σv f
Beijing 1971 3.34 7.74 79%
Tokyo 1927 1.8 3.4 58%
Seoul 1974 11.2 14.9 20%
Mexico 1969 3.7 5.9 55%
New York city 1878 3.3 8.3 68%
Shanghai 1995 14.9 20.2 31%
Moscow 1936 1.7 1.9 43%
Chicago 1901 1.91 6.24 71%
London 1863 2.3 3.8 48%
Paris 1900 2.6 5.1 60%
Madrid 1919 2.3 4.6 59%
Berlin 1901 1.6 3.3 65%
Barcelona 1914 1.4 4.8 78%
Osaka 1934 1.4 4.1 79%

TABLE: t0 is the initial year considered here for the different subways networks. v is the average velocity
(number of stations built per year), σv is the standard deviation of v , and f is the fraction of years of inactivity (no
stations built).

(i) large velocities at small times ; (ii) large fluctuations from year to
year ; (iii) f on average 60%



Evolution [OF]

bursty growth of the
number of stations,
with periods of
inactivity

convergence to a
stationary state
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Universal template [OF]

Core

Junctions

Branches

Terminus

Fork

simple algorithm :

start from line tails

progress along branch as
long as node degree is 2

ignore “simple forks”



Universal template [OF]

simple measures

fraction of branch
nodes
β =

Nbranches

Nbranches+Ncore

avg. core degree

〈kcore〉 = 2
Ecore
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spatial extension
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branch vs. core is relatively constant, in terms of
number of stations and spatial extension
continuing, slow densification of the core
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Scaling core/branches [OF]

old result for Paris
(Benguigui & Daoud 1991)
short scale, N(r) ∼ r2,
long scale, N(r) ∼ r .5

reinterpret it in terms
of “branch/core”
defining rcore as
N(r = rcore) = Ncore

City Ncore rcore (kms)
Beijing 63 4.4
Tokyo 151 6.4
Seoul 243 11.6
Mexico 90 4.7
Shanghai 57 3.7
Moscow 39 5.9
London 142 7.3
Paris 186 4.2
Madrid 113 4.4
Berlin 68 5.5
Barcelona 57 3.5
Osaka 46 3.6
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Scaling core/branches [OF]
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dr for rcore � r < rmax

∆(r) ∼ r τ ⇒ N(r � rcore) ∼ r1−τ

τ ' 0.05 (Moscow), τ ' 0.5 (Paris)
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