Dynamics on and of subway networks

CAMILLE ROTH

CNRS (CAMS, CNRS / EHESS)

Séminaire LIP6 – 2 mars 2012

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Dynamics [ON] and [OF] subway networks

based on two 2011 papers co-authored with Marc Barthélémy, Michael Batty et Soong Kang

[ON] "Structure of urban movements : polycentric activity and entangled hierarchical flows"

PLoS One, 6(1):e15923

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

[OF]

"Long-time limit of world subway networks"

arXiv:1105.5294

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

flows of individuals : proxy for activity and the city's structure

- data: London subway
 - Oyster card (anonymized) :
 - \rightarrow origin, destination, time
 - 11m trips (1 week) for 2m individuals

\rightarrow complete, weighted graph...

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

ON

Temporal structure

morning : many sources, a few sinks

evening : a few sources, many sinks

Traffic distribution

[ON]

Temporal structure

morning : many sources, a few sinks

evening : a few sources, many sinks

Fraffic distribution

[ON]

Temporal structure

morning : many sources, a few sinks

Full day

evening : a few sources, many sinks

Traffic distribution

Temporal structure

morning : many sources, a few sinks

 $P(w_{ii})$

[ON]

evening : a few sources, many sinks

Traffic distribution %flow 609 409 20%

[ON]

・ コット (雪) (小田) (コット 日)

...as opposed to a typical law found in Brockman et al., 2006 (bank notes) and Gonzalez et al., 2008 (mobile phones) following :

$$P(d) \sim \frac{1}{d^{\gamma}} \mathbf{e}^{-d/\kappa}$$

[ON]

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

ъ

...as opposed to a typical law found in Brockman et al., 2006 (bank notes) and Gonzalez et al., 2008 (mobile phones) following :

$$P(d) \sim \frac{1}{d^{\gamma}} \mathbf{e}^{-d/\kappa}$$

Ride distribution

[ON]

...as opposed to a typical law found in Brockman et al., 2006 (bank notes) and Gonzalez et al., 2008 (mobile phones) following :

$$P(d) \sim rac{1}{d^{\gamma}} \mathbf{e}^{-d/\kappa}$$

Preference for short trips

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへ⊙

Structure of centers

Activity centers

- for each important sink, find a corresponding 'polycenter' in the vicinity
- rank stations by decreasing flow, group them geographically, stop when the total inflow reaches a certain value W (here, W = 60%)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Structure of centers

[ON]

æ

Structure of flows

How are the flows organized between sources and centers/sinks ?

- we consider flows from a station to a center/sink : $w_{iC} = \sum_{i \in C} w_{ij}$
- we sort them and explore the changes in the structure when going down the list

Example map

Structure of flows

How are the flows organized between sources and centers/sinks ?

- we consider flows from a station to a center/sink : $w_{iC} = \sum_{i \in C} w_{ij}$
- we sort them and explore the changes in the structure when going down the list

Example map

The transition matrix T

$W \rightarrow W + \delta W$

T_{ij} : number of sources such that :

$$k_{\text{out}} = i(W) \quad \rightarrow \quad k_{\text{out}} = j(W + \delta W)$$

$$\bullet A_i: \quad 0 \to i > 0$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

The transition matrix T

$W \rightarrow W + \delta W$

$$T_{ij}$$
 : number of sources such that :

$$k_{\text{out}} = i(W) \rightarrow k_{\text{out}} = j(W + \delta W)$$

$$\bullet A_i: \quad 0 \to i > 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

The transition matrix T

$W \rightarrow W + \delta W$

$$T_{ij}$$
 : number of sources such that :

$$k_{\text{out}} = i(W) \rightarrow k_{\text{out}} = j(W + \delta W)$$

$$\bullet A_i: \quad 0 \to i > 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Non-hierarchical structure

 $\rightarrow\,$ mixing of flows of different orders of magnitude

ightarrow we divide polycenters in three groups according to their total inflow

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

[ON]

Non-hierarchical structure

 $\rightarrow\,$ mixing of flows of different orders of magnitude

 \rightarrow we divide polycenters in three groups according to their total inflow

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Structure of flows

[ON]

Non-hierarchical structure

 $\rightarrow\,$ mixing of flows of different orders of magnitude

to which groups do the important links of the sources go?

I for 80% of the sources the most important flow goes to group I → not optimized, congestion...

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Structure of flows

[ON]

Non-hierarchical structure

 $\rightarrow\,$ mixing of flows of different orders of magnitude

to which groups do the important links of the sources go?

for 80% of the sources the most important flow goes to group I → not optimized, congestion...

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

conclusions

spatial features of the rides

consistence of recent results on ride/trip distribution ?

spatial organization of activity

- limited number of sources and sinks
- organized in a hierarchical polycentric structure
 - ightarrow the notion of polycenter depends on the scale

spatial organization of flows

- iterative scheme
- non hierarchical : most important flows always go to the same centers
 - efficiency and congestion : London as a 'natural' city (as opposed to an 'artificial', optimized city)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

conclusions

- spatial features of the rides
 - consistence of recent results on ride/trip distribution ?
- spatial organization of activity
 - limited number of sources and sinks
 - organized in a hierarchical polycentric structure
 - \rightarrow the notion of polycenter depends on the scale
- spatial organization of flows
 - iterative scheme
 - non hierarchical : most important flows always go to the same centers
 - ⇒ efficiency and congestion : London as a 'natural' city (as opposed to an 'artificial', optimized city)

conclusions

- spatial features of the rides
 - consistence of recent results on ride/trip distribution?
- spatial organization of activity
 - limited number of sources and sinks
 - organized in a hierarchical polycentric structure
 - \rightarrow the notion of polycenter depends on the scale
- spatial organization of flows
 - iterative scheme
 - non hierarchical : most important flows always go to the same centers
 - ⇒ efficiency and congestion : London as a 'natural' city (as opposed to an 'artificial', optimized city)

FIGURE: Percentage of cities with a subway system versus the population (UN data) [exponential fit : $f \sim 1 - \exp(-P/P_0)$ with $P_0 \approx 3$ m].

specific issues

spatial networks

- nodes are located in space
- network embedded in a space equipped with some metric... → with a 'cost' associated to the length of links : a long link must be compensated by something else (large degree, traffic, etc.)

time evolving

- new stations, new lines.
- increase of the spatial extension.

network-based measures and tools

typical "scale-free" measures are not immediately relevant usual measures for planar networks

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

specific issues

spatial networks

- nodes are located in space
- network embedded in a space equipped with some metric...

 with a 'cost' associated to the length of links : a long link must be
 compensated by something else (large degree, traffic, etc.)

time evolving

- new stations, new lines.
- increase of the spatial extension.

network-based measures and tools

typical "scale-free" measures are not immediately relevant

(日) (日) (日) (日) (日) (日) (日)

usual measures for planar networks

specific issues

spatial networks

- nodes are located in space
- network embedded in a space equipped with some metric... → with a 'cost' associated to the length of links : a long link must be compensated by something else (large degree, traffic, etc.)

time evolving

- new stations, new lines.
- increase of the spatial extension.

network-based measures and tools

- typical "scale-free" measures are not immediately relevant
- usual measures for planar networks

Spatial features

[OF]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

[OF]

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽ Q Q @

[OF]

103cow metro 1550

◆□ > ◆□ > ◆ □ > ◆ □ > ● □ ● ● ● ●

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへで

37.8

Moscow metro 1981

◆□ > ◆□ > ◆ 三 > ◆ 三 > ○ Q @

37.8

Moscow metro 1995

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

[OF]

Some simple properties

City	t ₀	\overline{V}	σ_V	f
Beijing	1971	3.34	7.74	79%
Tokyo	1927	1.8	3.4	58%
Seoul	1974	11.2	14.9	20%
Mexico	1969	3.7	5.9	55%
New York city	1878	3.3	8.3	68%
Shanghai	1995	14.9	20.2	31%
Moscow	1936	1.7	1.9	43%
Chicago	1901	1.91	6.24	71%
London	1863	2.3	3.8	48%
Paris	1900	2.6	5.1	60%
Madrid	1919	2.3	4.6	59%
Berlin	1901	1.6	3.3	65%
Barcelona	1914	1.4	4.8	78%
Osaka	1934	1.4	4.1	79%

TABLE: t_0 is the initial year considered here for the different subways networks. \overline{v} is the average velocity (number of stations built per year), σ_v is the standard deviation of v, and f is the fraction of years of inactivity (no stations built).

(i) large velocities at small times; (ii) large fluctuations from year to year; (iii) *f* on average 60%

- bursty growth of the number of stations, with periods of inactivity
- convergence to a stationary state

・ロット (雪) (日) (日)

э

simple algorithm :

- start from line tails
- progress along branch as long as node degree is 2

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

ignore "simple forks"

[OF]

[OF]

simple measures

 fraction of branch nodes $\beta = \frac{N_{\text{branches}}}{N_{\text{branches}} + N_{\text{core}}}$
 avg. core degree $\langle k_{\text{core}} \rangle = 2 \frac{E_{\text{core}}}{N_{\text{core}}}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

[OF]

simple measures

- fraction of branch nodes $\beta = \frac{N_{\text{branches}}}{N_{\text{branches}+N_{\text{core}}}}$
- avg. core degree $\langle k_{\text{core}} \rangle = 2 \frac{E_{\text{core}}}{N_{\text{core}}}$
- $\ \, {\rm spatial\ extension} \\ \eta = \frac{\bar{D}_{\rm branches}}{\bar{D}_{\rm core}}$

[OF]

simple measures

- fraction of branch nodes $\beta = \frac{N_{\text{branches}}}{N_{\text{branches}+N_{\text{core}}}}$
- avg. core degree $\langle k_{\text{core}} \rangle = 2 \frac{E_{\text{core}}}{N_{\text{core}}}$
- $\ \, {\rm spatial \, extension} \\ \eta = \frac{\bar{D}_{\rm branches}}{\bar{D}_{\rm core}}$

\rightarrow limiting shape :

 branch vs. core is relatively constant, in terms of number of stations and spatial extension

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

continuing, slow densification of the core

[OF]

old result for Paris

(Benguigui & Daoud 1991) short scale, $N(r) \sim r^2$, long scale, $N(r) \sim r^{.5}$

reinterpret it in terms of "branch/core" defining r_{core} as $N(r = r_{core}) = N_{core}$

(ロ) (同) (三) (三) (三) (三) (○) (○)

[OF]

old result for Paris

(Benguigui & Daoud 1991) short scale, $N(r) \sim r^2$, long scale, $N(r) \sim r^{.5}$

• reinterpret it in terms of "branch/core" defining r_{core} as $N(r = r_{core}) = N_{core}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

old result for Paris

(Benguigui & Daoud 1991) short scale, $N(r) \sim r^2$, long scale, $N(r) \sim r^{.5}$

• reinterpret it in terms of "branch/core" defining r_{core} as $N(r = r_{core}) = N_{core}$

City	N _{core}	r _{core} (kms)
Beijing	63	4.4
Tokyo	151	6.4
Seoul	243	11.6
Mexico	90	4.7
Shanghai	57	3.7
Moscow	39	5.9
London	142	7.3
Paris	186	4.2
Madrid	113	4.4
Berlin	68	5.5
Barcelona	57	3.5
Osaka	46	3.6

(日) (日) (日) (日) (日) (日) (日)

old result for Paris

(Benguigui & Daoud 1991) short scale, $N(r) \sim r^2$, long scale, $N(r) \sim r^{.5}$

• reinterpret it in terms of "branch/core" defining r_{core} as $N(r = r_{core}) = N_{core}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

old result for Paris

(Benguigui & Daoud 1991) short scale, $N(r) \sim r^2$, long scale, $N(r) \sim r^{.5}$

• reinterpret it in terms of "branch/core" defining r_{core} as $N(r = r_{core}) = N_{core}$

・ コット (雪) (小田) (コット 日)

[OF]

 $\Delta(r) \sim r^{ au} \Rightarrow N(r \gg r_{
m core}) \sim r^{1- au}$

2 0.05 Lips Lips Lips Lange Long Lips Co.0 と

[OF]

