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Networks

Metrics, statistics to describe their organization
(degree distribution, modularity, etc.)

| Effeci of topology b-d»‘rhic |
| processes, e.g. spreading of |
| diseases.

S~—_ -~ o

Models to reproduce the observed
phenomena (PA) and build
statistical ensembles of random
networks (configuration model)
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Networks

Models for opinion formation,
random walks, disease spreading,
synchronization, etc.

|dentification of “super-spreaders”,
startegies to accelerate/hinder

propagation, etc.

-—

Improve our understanding of how
diffusion takes place in empirical
systems

¥

 Effect of topology on dynamic
| processes, e.g. spreading of ';‘
| diseases. ’l

e
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Networks

Metrics, statistics to describe their organization
(degree distribution, modularity, etc.)

Metrics based on
flows on the network

| Effeci of topology b-d»‘rhic |
| processes, e.g. spreading of |
| diseases.

S~—_ -~ o

Models to reproduce the observed
phenomena (PA) and build
statistical ensembles of random
networks (configuration model)
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Random Walk based metrics

Pagerank: the importance of a node is proportional to the density of random
walkers on it at stationarity

Random walkers explore the graph in an unbiased way

2
[Z/ highest PageRank
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Random Walk based metrics

Map Equation and Stability

A flow of proability should be trapped for long time periods within a
community before escaping it.

time

M. Rosvall and C. T. Bergstrom, PNAS 105, 1118 —1123 (2008)

J.-C. Delvenne, S. Yaliraki & M. Barahona, Stability of graph communities across time scales. PNAS 2010

Thursday, 23 February 2012



Random Walk based metrics are defined at stationarity

.... but the stationary state is either trivial, non-uniquely defined, or never
reached in a majority of empirical systems

mathematical tricks have been proposed to make the dynamics ergodic

Occasional teleportation

..*—“
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Random Walk based metrics are defined at stationarity

.... but the stationary state is either trivial, non-uniquely defined, or never
reached in a majority of empirical systems

mathematical tricks have been proposed to make the dynamics ergodic

Occasional teleportation

... but the ranking of nodes or their clustering into communities no longer
only depends on the topological properties of the system, but also on the
exact implementation of teleportation.
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Smart teleportation

Is it possible to improve the standard teleportation scheme to minimize its
effect on the outcome of the algorithm?

Non-uniform teleportation: teleportation depends on the topological
properties of the nodes.

(a) Recorded node teleportation ) Recorded link teleportation

%W

c) Unrecorded node teleportation  (d) Unrecorded link teleportation
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Pagerank Ti; = Ay kS

Random walk without teleportation Di:t41 = Z Tijpj;t.
J
Random walk with teleportation Pigr1=a Yy Tipjs+ (1 — v,
J
o0
— E : k E : k k—1
k—1 J

Pagerank depends on the details of teleportation, on vi and on the value
of alpha

A vast majority of works tend to overlook these is-
sues and use the standard value a = 0.85 and the uni-
form preference vector v; = 1/N, i.e. a walker randomly
teleports on any node, independently on any intrinsic
or topological properties. This choice of preference vec-
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Smart teleportation

The preference vector depends on the topological properties of the graph:

K
V; = 7
ki:n Eoo ak E ll’l ou

Robustness: pagerank is independent of alpha for

Undirected networks Eulerian graphs Mean-field

Az'j ~ k):}nk;?Ut/L
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Empirical checks

(a) Recorded node teleportation

Nature 1.98
PNAS 1.95
Science 1.82
JBC 1.74
PRL 0.895 Science 0.0577
Nature 0.0567
PNAS 0.0528
JBC 0.0427
1 PRL 0.0327
0.05 0.95

Teleportation rate

(c) Unrecorded node teleportation

Nature 2.10
PNAS 2.07
Science 1.92
JBC 1.84

Science 0.935
Nature 0.915

PRL 0.947 PNAS 0.836
JBC 0.629
PRL 0.424

1 1

0.05 0.95

Teleportation rate

(b) Recorded link teleportation

PNAS 2.36
Nature 2.35
JBC 2.19
Science 2.12 PNAS 1.62
JBC 1.62
Nature 1.49
Science 1.40
PRL 1.09 — PRL 1.07
| |
0.05 0.95

Teleportation rate

(d) Unrecorded link teleportation

PNAS 2.36
Nature 2.35
JBC 2.19
Science 2.12 PNAS 1.62
JBC 1.62
Nature 1.49
Science 1.40
PRL 1.09 — PRL 1.07
| 1
0.05 0.95

Teleportation rate
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Cosine similarity

Cosine similarity

Empirical checks
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(c) US political blogs
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(d) Swe. political blogs
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Community detection: don’t count teleportation steps

(a) Recorded node teleportation ) Recorded link teleportation

%%

c) Unrecorded node teleportation  (d) Unrecorded link teleportation
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Community detection: don’t count teleportation steps
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Community detection: don’t count teleportation steps

(a) Recorded teleportation (b)  Unrecorded teleportation
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-rom static to temporal networks

TEMPORAL NETWORK

8,13,14

Ly (B~ () o S o TR - - KR

time

see P. Holme & J. Saramaéaki, Temporal Networks, arXiv:1108.1780 (2011)
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-rom static to temporal networks

TEMPORAL NETWORK AGGREGATED WEIGHTED NETWORK
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Dynamical networks: static viewpoint

Most works look at dynamics on aggregated networks, e.g. if a
link appears 5 times between i and j in a certain time period, (i)
receives a weight 5

Dynamics either occurs at discrete times

5 Aij
Pizn4+1 = L. pl 1Y

j J

or at continuous times as a Poisson process, with a rate
proportional to the weight
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Dynamical networks: static viewpoint

Most works look at dynamics on aggregated networks, e.g. if a
link appears 5 times between i and j in a certain time period, (i)
receives a weight 5

Dynamics either occurs at discrete times

or at continuous times as a Poisson process, with a rate
proportional to the weight
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Simulations on temporal graphs...

Simulations on temporal graphs

Temporal Networks, P. Holme and J. Saraméki, arXiv:
1108.1780
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... and comparison with null models

1m0 0O @ >

MmO W >

FIG. 11: Hllustration of two types of randomization null-models for contact sequences. (a) shows a contact sequence (the same as in Fig. 1).
[n (b) it is randomized by the Randomly Permuted times procedure such that contacts happen the same number of time per edge. and the
aggregated network topology is the same. In (c) the contact sequence in (a) is randomized by the Randomized edges (RE) procedure. With
RE, the time sequence of the contacts along an edge is conserved, and so is the degree sequence of the original network, but all other structure
of the topology is destroved. (The latter statement is perhaps not so well illustrated by this figure as there are not so many graphs with the
degree sequence of the original, aggregate graph.)
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... and comparison with null models
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FIG. 1: (color online) (Left) Iraction of infected nodes
(I(t)/N) as a function of time for the original event sequence
(o) and null models: equal-weight link-sequence shuffled
DCWB (¢), link-sequence shuffled DCB (4), time-shuffied
DCW () and configuration model D (V). Inset: (I(t)/N) for
the early stages, illustrating differences in the times to reach
(I(t)/N) = 20%. (Right) Distribution of full prevalence times
P(ts) due to randomness in initial conditions.
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... but lack of theoretical understanding

® slowing down compared to random times:

see e.g. Small but slow world: how network topology and burstiness slow down spreading,
M. Karsai et al, Phys Rev E 83,025102(R) (201 1); Dynamical strength of social ties in
information spreading, Miritello et al, Phys. Rev. E 83,045102(R) (201 1)

® faster than random reference: see

Simulated Epidemics in an Empirical Spatiotemporal Network of 50,185 Sexual Contacts,
L.E.C. Rocha et al, PLoS Comput. Biol. 7,e1001109 (201 1)
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Dynamics on stochastic networks

FIG. 1: A directed graph with N = 3 nodes and no self-
loops. The waiting-time distribution %;; (f) characterizes the
appearances of an edge from j to 1.

Temporal Networks, P. Holme and J. Saraméki, arXiv:
1108.1780

Replacing the sequence of activation times by inter-event distributions

Deterministic => stochastic
Advantage: allows for a mathematical analysis and more realistic that

simple weights
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Random walks on stochastic networks

Generalized Montroll-Weiss Equation (usually for CTRW with non-
Poisson inter-event time statistics on lattices)

A(s) = — (1 = s (s)) (1 P (s)) "0 (0)

S

= (T D ()} 5 (0) x K (1) xn (1)

| b

Convolution in time Memory kernel

Effective transition matrix

Generalized Master Equations for Non-Poissonian Dynamics on Networks, T.H., M.A.P. and R.L.
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Random walks on stochastic networks

Generalized Montroll-Weiss Equation (usually for CTRW with non-
Poisson inter-event time statistics on lattices)

A(s) = — (1 = By (s)) (I _ (s)) 0 (0)

S

e (T(t)*[:_l {D;l (S)} _5(t)) « K (t) % n (t)

V&5

| |

Convolution in time Memory kernel

Effective transition matrix

Time ordering} e

Generalized Master Equations for Non-Poissonian Dynamics on Networks, T.H., M.A.P. and R.L.
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Random walks on stochastic networks

Generalized Montroll-Weiss Equation (usually for CTRW with non-
Poisson inter-event time statistics on lattices)

e 2 (1 = s (s)) (1 P (s)) "0 (0)

S

= (T D ()} 5 (0) x K (1) xn (1)

Lo
lPoisson

=L Z Mg (8 — Ko (8) (23)

This dynamical process is driven by the combinatorial
Laplacian L;; = A\;; — A;0;; of the underlying weighted
network.

Generalized Master Equations for Non-Poissonian Dynamics on Networks, T.H., M.A.P. and R.L.
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Random walks on stochastic networks

Steady-state solution

Probability mass function

Probability mass function
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Generalized Master Equations for Non-Poissonian Dynamics on Networks, T.H., M.A.P. and R.L.
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Random walks on stochastic networks

Steady-state solution only steady at long times (memory)
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FIG. 4: Random-walker density on each node of the graph
illustrated in Fig. 2 as a function of time when the initial
condition is the steady-state solution. The system exhibits
transient dynamics before returning to its steady-state solu-
tion due to the time-dependent nature of the dynamics. The
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error-bars represent the 5o confidence interval.

Generalized Master Equations for Non-Poissonian Dynamics on Networks, T.H., M.A.P. and R.L.
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Conclusion

Importance of teleportation on random walk metrics

Effect of the time evolution of the network on diffusion
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