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Abstract 
Concept lattices built with Formal Concept Analysis 

are usually represented by Hasse diagrams illustrating 
the groupings of objects described by common attributes. 
Hasse diagrams display the relations of partial order 
between concepts in a hierarchical fashion, where each 
concept may have several parent concepts. Lattice 
visualization becomes a problem as the number of 
clusters grows significantly with the number of objects 
and attributes. Interpreting the lattice through a direct 
visualization of the line diagram rapidly becomes 
impossible and more synthetic representations are 
needed. In this work we propose several methods to 
enhance the readability of concept lattices firstly though 
colouring and distortion techniques, and secondly by 
extracting and visualizing trees derived from concept 
lattices structures. 

Keywords--- Concept Lattices, Formal Concept 
Analysis, Tree Extraction. 
 

1. Introduction 

The vast amount of data generated over the last 
decades has brought new challenges to the analytics 
science. Visual data analysis and knowledge 
representation employ methods such as Formal Concept 
Analysis (FCA) in order to identify groupings of patterns 
from the analysis process [26]. FCA provides an intuitive 
understanding of generalization and specialization 
relationships among objects and their attributes in a 
structure known as a concept lattice. A concept lattice is 
traditionally represented by a Hasse diagram illustrating 
the groupings of objects described by common attributes. 
A Hasse diagram is a graph where concepts appear as 
vertices on the plane connected by line segments or 
curves. The layout of the partially ordered set may be 
seen as a layered diagram [2]. Lattices visualization 
becomes a problem as the number of clusters grows 
significantly with the number of objects and attributes. 
Interpreting the lattice through a direct visualization of 
the line diagram rapidly becomes impossible and more 
synthetic representations are needed.  

In this work we propose alternatives to the 
traditional lattice representation, firstly by enhancing the 

readability of concept lattices though colouring and 
distortion techniques; secondly by extracting and 
visualizing trees derived from the lattices structure. The 
tree extraction from the original lattice has some unique 
advantages: it eliminates all edges crossing and the 
resulting hierarchy is also easier to interpret and to 
represent. Moreover, this representation still provides an 
overview of the dataset, highlighting significant 
properties of the lattice. In order to extract trees from 
lattices, we define a set of parent concept selection 
criteria, including the stability and support indexes [1,4] 
provided by FCA literature, confidence index as well as 
topological features of the lattice. 

The paper is organized as follows. Section 2 
provides background on lattice representations; Section 3 
proposes a set of criteria for transforming concept 
lattices into trees; Section 4 discusses colouring and 
distortion techniques for enhancing interpretations of 
lattices. Section 5 presents instantiations of the suggested 
criteria and visualizations in the biology domain, 
followed by a discussion in section 6. Section 7 finally 
concludes and presents perspectives for future work. 

2. Visual Representation of Concept Lattices 

As mentioned above, FCA analysis produces 
lattices, usually represented as layered directed acyclic 
graph graphs, named Hasse diagrams illustrating the 
groupings of objects described by common attributes. 
Hasse diagrams display the partially ordered sets 
(posets) between concepts in a hierarchical fashion, 
where each concept may have several parent concepts. In 
the following example about animal’s features, the 
formal context in table 1 generated the concept lattice 
illustrated in figure 1. The partial order among concepts 
of the lattice is materialized through the generalization 
and specialization relationships: for instance Concept 4 
(representing the set of flying birds, containing Finch and 
Eagle objects), is more specific than Concept 1 (which 
contains all birds –flying or not-), and thus contains a 
smaller number of objects (Concept 1 has an extra one, 
the ostrich). This partial order provides different levels 
of abstraction and native navigation links from a given 
concept. 



As mentioned earlier, such diagrams are usually 
layered graphs, where concept vertices are assigned to 
horizontal layers according of the number of common 
attributes, and are ordered within each layer to reduce 
edge crossings. FCA lattices in particular suffer from 
considerable edge crossings, especially if the number of 
concepts exceeds a few dozen as is the case in more real 
word applications [13], which leads to reduced graph 
readability and aesthetics [3]. 

To reduce the complexity of lattices, simplified 
diagrams can be produced by condensing or clustering 
concepts according to similarity [4]. Visualisations can 
also be restricted to portions of the data [5], and concept 
size reduction is possible by incorporating conditions 
into the data mining process [6]. Finally, conceptual 
measures can be applied to identify the most relevant 
concepts and filter outliers [7].  

To deal specifically with the visual complexity of 
Hasse diagrams, several approaches allow users to 
dynamically explore and reveal specific parts of the 
diagram, using visual query languages [8-10]. However 
these techniques do not provide a clear view of the entire 
lattice.  

Other FCA visualization approaches map the 
distances between concepts to visual variables, in order 
to highlight patterns. For example in [11] similar 
concepts are represented as similarly coloured pixels 
placed in the 2D space along a Peano-Hilbert curve, so 
that similar concepts are placed close from one another. 
Nevertheless in these representations detailed 
relationships between concepts are lost. Finally, systems 
often provide users with hybrid/combined lattice 
visualization, e.g. showing both a general Hasse diagram 
and a tag cloud for representing the neighbours of a 
specific concept (for a review see [12]). 

Our approach consists in representing lattices not as 
Hasse diagrams, but as trees. We use different criteria to 
extract trees from lattices, and visualize the resulting 
trees. Trees are inherently simpler hierarchical structures 
than Hasse diagrams and due to their applicability in 
many domains, there is a plethora of tree representations. 
These include: indented outline trees, sometimes called a 
“tree list” (common in file browsers such as windows 
Explorer), traditional layered node-link diagrams in 2D  
or 3D (e.g. ConeTrees [14]), spatially transformed tree 
diagrams (e.g. Radial [15]) as well as several space 
optimization (Space Optimized trees [16]) and space-
filling tree visualization techniques (e.g. TreeMaps [17]). 

Table 1. A formal context of animals. 

Animal Preying Mammal Flying Bird 
Lion X X   
Finch   X X 
Eagle X  X X 
Hare  X   

Ostrich    X 

 

Figure 1. Generated concept lattice for the 
animal’s context in table 1. 

3. Tree Extraction from Concept Lattices 

Trees are a common and easily understandable 
visual representation. We consider them as a 
visualization alternative to large cluttered concept 
lattices, which preserves all lattice entities and some of 
its structure. In order for a tree visualization to be an 
effective alternative to a lattice, the extraction of the tree 
from the lattice needs to preserve the most essential 
features of the original structure.  

The present approach consists in extracting a tree 
from a concept lattice by choosing one single parent 
concept for each concept of the lattice. We start from the 
most specific concepts i.e. the parent concepts of the 
lower bound of the lattice, at the bottom of the Hasse 
diagram (concepts 5 and 6 in Figure 1) and select a 
single parent concept for each of them, and reproduce 
this recursively. Choosing a single parent concept at each 
step leads to an information loss. Our goal is to minimize 
this loss by selecting parents using the most relevant 
criteria according to the kind of analysis performed by 
the analyst. Before proceeding, we briefly recall the FCA 
terminology [18]. Given a (formal) context                   
K = (G,M, I), where G is called a set of objects or extent, 
M is called a set of attributes or intent, and the binary 
relation I  G ×M specifies which objects have which 
attributes, the derivation operators (·)’ are defined for A 

 G and B  M: 

A’ = {m  M | g  A : gIm}; 
B’ = {g  G | m  B : gIm}. 

In the following sections we consider various 
strategies for selecting parent concepts, including the 
stability and support indexes from FCA literature, 
confidence, as well as topological features of the lattice. 

3.1. Parent Selection based on the highest 
Stability or Support 

The stability index measures the proportion of subsets 
of objects of a given concept whose derivation is equal to 
the intent of this concept [1]. In other words, the stability 
indicates the probability of preserving a concept intent 



while removing some objects of its extent. We recall the 
definition of stability: 
 

Definition 1. Let K = (G,M,I) be a formal context and 
(A,B) be a formal concept of K. Card is a cardinality 
function. The stability index of (A,B) is defined as: 

,
 |

2
 

Using the context in table 1 as an example, we 
calculate the stability for concepts 2 and 4 in order to 
select a parent for concept 5 (0.25 and 0.5 respectively); 
we keep the one with highest stability, in this case we 
therefore remove the edge between concepts 2 and 5. 
The idea behind the choice of the parent concept with the 
highest stability is that we expect to keep parent 
concept’s meaning even if some of the objects or 
attributes are removed. 

On the other hand, the support measure is the relation 
between the intent closure and the number of total of 
objects [4]: 

 
Definition 2. Let B   M. The support count of the 

attribute set B in K is: 

φ B    

The use of support as parent selection criteria may lead 
to trees containing concepts that have fewer 
specialization levels since in general, generic concepts 
have higher support values than their most specific 
counterparts [4]. Concept stability and support measures 
have been widely used in FCA and their combination has 
been promising [1] in reducting the lattice.  

3.2. Parent Selection Based on Shared Attributes 
and Objects 

This approach relies on clustering parent and child 
concepts which share most of their attributes or objects. 
Parent and child having a great number of attributes in 
common are supposed to be grouped together following 
the principle of similarity clustering and local 
predictability [19]. Its definition is: 

 
Definition 3. Let ConceptParent (A,B) be such that A 

  G and B   M. Let ConceptChild (C,D) be C   G 
and D   M. The shared attribute index of an edge E 
(C,D)→(A,B): 

 

In the same animal’s context in table 1, we have 
potential parent concepts 2 and 4 sharing the same 
number of objects with concept 5, but concept 4 has 
more attributes in common with 5, so it should be chosen 
as the unique parent of concept 5. 

3.3. Parent Selection Based on Confidence 

The confidence value of a concept estimates how 
likely an object which has an attribute set A, also has an 
attribute set C [18]. In other words, it tries to measure 
how strong the implication of the parent attributes in the 
child objects is. For instance, considering the formal 
context in table 1, what is the probability of a given 
object that is {Bird, Flying} to be also {Bird, Flying, 
Preying}? The following paragraph formalizes its 
definition. 

 
Definition 4. Let ConceptParent (A,B) be such that A 

  G and B   M. Let ConceptChild (C,D) be C   G 
and D   M. The confidence of an edge E (C,D)→(A,B): 

 

An advantage of this method is its consistency with 
the interpretation of concept lattices. Taking our animals 
context as example, there is a 50% probability that an 
animal that is a flying bird is also a flying and preying 
bird. By contrast, an animal that is preying has only 33% 
of chance to be also a flying bird. 

3.4. Tree Transformation Based on the 
Minimum Spanning Tree 

This topological-driven approach seeks to choose 
the tree configuration on the graph which has the shortest 
paths among all concepts. A detailed definition of the 
algorithm can be found in [20]. In this case, we choose 
the parent concept which minimizes the number of steps 
needed to reach the top of the lattice, and therefore most 
generic parents (closer to the top) will be preferred rather 
than the specialized ones. This is the only proposed 
strategy that takes into account the topology of a lattice, 
and it yields concepts with similar depth (specialization) 
levels. 

4. Using extraction criteria to enhance 
Lattice and Tree Interpretation through 
Drawing, Sizing and Shaping 

Common graph drawing techniques include the 
assignment of different colours, shapes and sizes to 
nodes and edges, according to different dimensions or 
properties. This approach is underused in traditional 
lattice visualizations, where the main visual variable 
used is node/link colour to reflect user selections or node 
size to indicate the immediate presence of an extent or 
intent as displayed in ConExp1. 

In our work we use these as well as other visual 
variables in a Hasse diagram to represent possible tree 
extraction criteria. This provides several benefits to 
lattice and extracted tree understanding. First, it enables 
users to rapidly associate the dimension/criteria in 

                                                 
1 ConceptExplorer. http://conexp.sourceforge.net/ 



question (e.g. stability, support in Figure 2 with 
concepts, thus justifying the choices made during the tree 
extraction process. Second, visualizing different 
extraction criteria using various visual variables, allows 
users to compare these criteria in order to choose the one 
that better fits their needs. Third, irrespective of the tree 
extraction process, matching visual attributes to concept 
attributes establishes a benchmark/comparison among 
concepts, making it possible to compare at a glance 
different concepts, even if they do not have a link in 
common, as well as gain insights on the whole lattice 
itself. Finally, prominent features of the lattice like 
specialization and generalization can be better 
understood: for instance the power of implications of 
different concepts can be rendered by edge thickness. 
The concept node itself can be a visual metaphor for the 
intent and extent. In the example of figure 2, a pie chart 
replaces the traditional box representation to depict the 
proportion of objects (blue) and attributes (yellow). In 
this way users can be guided in understanding and 
choosing criteria for extracting trees to simplify the 
lattice representation. 

 

 

Figure 2. Animal lattice with nodes as pie charts 
sized by stability, and edge thickness by 
confidence. Pie charts indicate the ratio 

intent/extent of the concept. 

 
 

5. A Qualitative Analysis of the Proposed 
Parent Selection Criteria 

In this section we discuss a case study of a concept 
lattice to qualitatively examine the nature of the trees 
resulting from different criteria. The techniques for 
lattice transformation and drawing were implemented in 
a visual analytics tool called CUBIST Analytics and 
applied to a dataset2  containing 8 animals and 9 

                                                 
2 The “Needs water to live” dataset is available at 
http://www.upriss.org.uk/fca/examples.html 

attributes which produced a lattice with 19 concepts  
(figure 3). Each of the measures proposed revealed 
particular aspects on the analysis of a lattice, illustrated 
in table 2. 

Table 2 a) shows the tree generated with stability as 
parent selection criterion. In practice, it resulted in a tree 
with very stable concepts more likely to retain their 
subsequent children. For instance, the concept {lives in 
land} was the preferred parent of the concept that holds 
our notion for amphibians: {lives on land, lives in water} 
because it is more stable than its counterparts. 

The measure of shared objects was the criterion that 
generated the tree in table 2 b). Parent concepts sharing 
most objects with child concept were the preferred 
candidates. As an example, the concept {lives on land} 
shares more objects with {lives on land, needs 
chlorophyll} than concept {needs chlorophyll} does, 
therefore it was the chosen parent in this case. 

Table 2 c) the tree was generated from confidence 
criterion, therefore children nodes are associated with the 
parent with which the relationship of confidence is the 
highest among the candidates. As a result, the relation 
{can move, has limbs} has a stronger implication in 
{lives on land} than {lives on land} has for {can move, 
has limbs}, for example.  

Table 2 d) depicts the tree generated by the 
minimum spanning tree criterion. In this configuration, 
concepts are arranged in a way that they are closer 
semantically from the rest of lattice and hence it features 
a more symmetric structure in comparison with previous 
approaches.  

 

 
Figure 3. Concept lattice of the biology domain. 

 

6. Discussion 

Some may argue that due to the tree construction, 
the present approach breaks the original lattice meaning, 
and therefore subsequent mathematical models based on 
this structure. It is noteworthy to observe however, that 
only the links in the lattice graph structure are removed 
and the lattice structure remains semantically valid, since 
there is no need to take out the attributes or objects that 
concepts have in common with their parents.   



Table 2. Trees generated from the lattice in 
figure 4 for each one of the proposed measure. 
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The choice of parent selection criteria for tree 

transformation corresponds to a classification problem to 
some extent. Deciding if a Lion is more “mammal” than 
it is “preying” it’s not always straightforward, hence we 
rely on the measures that attempt to keep the context 
semantics when looked to the whole concept lattice. For 
instance, if we have more objects described by mammal 
which are “closer” to Lion than other concepts, then it 
may reasonable to be chosen as its parent. As general 
recommendations, one should use the criteria that best 
fits to their analysis task (table 3). 

In addition to the tree-extraction strategies, the use 
of colours, size, shaping and thickness for both nodes 
and edges in the original lattice to represent the criteria 
metrics (such as stability, support, specialization or 
implication) can enhance the interpretation of a concept 
lattice, and aid users in their choice and interpretation of 
the created trees. 

The labelling strategy for identifying concepts 
should be taken into account as well. Merely placing 
attributes and objects names on concepts may be 
cumbersome for large lattice analysis (used in most FCA 
visualizations). In this case, it is recommended to 
represent the concept’s intent and extent with visual 
metaphors like the pie chart shown in figure 2. 

Conclusions and Future Work 

Traditional software in FCA makes little use of 
visualization techniques, producing poorly readable 
lattice graphs when the number of concepts exceeds a 
few dozens. In this work we have presented a 
transformation approach to extract trees from concept 
lattices, attempting to minimize semantic  and conceptual 
loss in favour of readability and interpretation. We have 
also presented ways to visually show the extraction 
criteria in the original lattice. This is an important step in 
the visual analysis of conceptual structures, as the 
resulting tree structures are visually easier to understand 
than cluttered lattice graphs. Domain experts can thus 
visually explore larger datasets that traditional 
visualizations of concept lattice cannot represent 
effectively. Each of the tree construction measures 
proposed in our work provides particular insights 
valuable to different analysis tasks, identified in our 
paper as recommendations.  

In the future we plan to combine two or more criteria 
for parent selection with other lattice reduction 
techniques (e.g. icebergs lattices [4]). We also plan to 
conduct user experiments to understand when users want 
to have full lattice views vs. tree views, which metrics 
for creating trees are of most interest to them and under 
which circumstances, and assess if our visual indications 
allow users to understand the extraction tree process. 
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Table 3. General guidelines on the usage of the proposed metrics.

 
Criteria 

Description Rationale Suitable for 

Stability  It measures how likely a concept is to 
change if some of their attributes or 
objects are removed. 

Stable concepts are less impacted by 
noise and usually represent strong 
correlation with real world entities (e.g.: 
a concept that encapsulates our notion of 
“mammal”). 

Observing real world 
analogies  

Support  It measures the frequency of the 
concept itemset. 

Frequent concepts are usually generic 
concepts since they aggregate a larger 
number of objects than the specialized 
ones. 

Frequent pattern 
analysis  

Shared 
objects / 

attributes  

It represents the degree of similarity 
between parent and child nodes. 

Concepts that share most attributes or 
objects should be linked together because 
they are similar. 

Similarity analysis  

Confidence  It measures how strong the 
implication is between a parent 
concept in a child concept. 

Implication is one of the desired 
interpretation of a concept lattice. 

Confidence analysis  

MST  It extracts a minimum spanning tree 
from the concept lattice. 

It looks at concepts that have some 
degree of similarity with all other 
concepts. 

Topological analysis  
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