
A Radar for the Internet

Matthieu Latapy 1, Clémence Magnien 1 and Frédéric Ouédraogo 1,2

Abstract. Mapping the internet’s topology is a challenge in itself, and studying its dynamics is
even more difficult. Achieving this would however provide key information on the nature of the
internet, crucial for modeling and simulation. Moreover, detecting anomalies in this dynamics is a
key issue for security. We introduce here a new measurement approach which makes it possible to
capture internet dynamics at a scale of a few minutes in a radar-like manner. By conducting and
analyzing large-scale measurements of this kind, we rigorously and automatically detect events in
the observed dynamics, which is totally out of reach of previous approaches.

Since the end of the 90s, mapping the internet as a large set of nodes and links received much
attention. However, due to its distributed nature and its sheer size, accurately measuring this
topology is extremely difficult. The main method to do so relies on the classical traceroute tool [8],
which gives a path from a machine connected to the internet (called monitor) to any other (called
destination). Such paths are composed of ip addresses of internet routers and links between them.
One may then obtain a (partial) map of the internet by running traceroute from many monitors
to many destinations, and merging the obtained paths, see Figure 1. For various reasons, however,
this is far from trivial and the obtained maps are not satisfactory [6, 3, 4]. Therefore, much effort
is nowadays devoted to the improvement of available maps, in particular by increasing the number
of monitors, e.g. [43, 24], and by designing more accurate measurement tools, e.g. [12].

In this situation, it must be clear that studying the dynamics of the internet’s topology, and
in particular detecting events in this dynamics, is totally out of reach of current approaches. Even
the study of global trends in the evolution of the internet is extremely difficult [31].

We propose here an approach which makes it possible, for the first time, to observe the dynamics
of the internet’s topology at the scale of a few minutes. It consists in focusing on the part of the
internet’s topology viewed from a single monitor, which we call an ego-centered view, see Figure 1.
Such views are far from representative maps of the internet, but they have several key advantages.
In particular, they can be obtained very rapidly with low network load, and thus may be repeated
at a high frequency. This makes it possible to study their dynamics, and then to gain insight on
the dynamics of the internet’s topology itself.

The measurement tool.
In principle, one may use the traceroute tool to obtain ego-centered views: it suffices to run

it from a monitor towards a given set of destinations, and then merge the obtained paths, as in
Figure 1. However, this approach has severe drawbacks. In particular, it is highly redundant and
it induces a very heterogeneous load on links: since traceroute sends one probe for each link on
the path to discover, the links close to the monitor are overloaded. For instance, the traceroute
ego-centered measurement from l described in Figure 1 discovers link l–b six times, using six probes.
The situation is even worse in practice, see supplementary material [10].
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Figure 1: Measurement of an internet-like topology. The classical approach consists in running
traceroute from a number of monitors, here h and l, towards some destinations, here t, x, k, w, z
and d. We obtain here the following paths from h: h–y–t; h–q–x; h–q–o–k; h–q–o–j–w; h–v–n–z;
h–v–n–d. We obtain the following paths from l: l–b–t; l–b–t–q–x; l–b–t–q–o–k; l–b–t–q–o–j–w;
l–b–n–z; l–b–n–d. The final map of the network is obtained by merging all these paths. Instead,
one may focus on the set of paths obtained from a single monitor, which we call its ego-centered
view of the network.

In order to perform fast ego-centered measurements with low and balanced network load, we
therefore had to design a dedicated measurement tool, called tracetree. The traceroute tool discovers
a path by sending a series of probes towards the destination in a forward manner: the first probe
discovers the first link, the second probe discovers the second link, and so on. Instead, the tracetree
tool discovers a tree by sending probes towards all destinations in parallel in a backward manner
and avoids redundancy by stopping probing towards some destinations when paths collapse: given
a set of destinations, it first discovers the last link on the path to each of them, then the previous
link on each of these paths, and so on; when two (or more) paths reach the same node then it stops
probing towards all corresponding destinations except one. See Figure 2 for an illustration, and
supplementary material for a detailed specification and implementation of tracetree [10].

The tracetree tool performs ego-centered measurements very efficiently, both regarding time
and network load. It sends exactly one probe for each link to discover, and thus induces a perfectly
balanced load. Radar measurements then consist in iterating ego-centered measurements with
tracetree, from a monitor to a given set of destinations.

Measurements and dataset.
In order to conduct radar measurements relevant for our goals, one has to decide on several

parameters. In particular, there is a trade-off between the frequency at which one conducts these
measurements (it should be as high as possible), their size (they should capture the dynamics of as
many nodes as possible), and the induced network load (it must be low enough to avoid problems
with network administrators and bias it may induce).

Many parameters have an impact on these desirable features. As it is impossible to test all
combinations to choose the best ones, we used the following approach. We first chose a set of
seemingly reasonable parameters, which we call base parameters. Then we started measurements
with these parameters from several monitors in parallel. We kept some monitors, called control
monitors, with these parameters constant; on others, called test monitors, we alternated periods
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Figure 2: Illustration of the tracetree measurement method. Left: the first series of probes discovers
the last link before each destination; tracetree stops probing towards z because the paths to d and
z collapse (at n). Center: the second series of probes discovers the links just before, and tracetree
stops probing towards most destinations: towards t and x because the full path towards them
has been discovered; towards k and w because the corresponding paths collapse with previously
discovered nodes. Right: the third (and last) series of probes contains only one probe, sent towards
d, which ends the tracetree measurement. Finally, tracetree sent exactly one probe for each link,
thus avoiding redundancy and reducing the network load significantly.

with base parameters and periods where we changed one parameter. The observed changes made it
possible to study the influence of this parameter. Control monitors made it possible to check that
the changes observed from test monitors was caused by changes of parameters, not events in the
network. The alternation of periods with base parameters and modified ones also made it possible
to confirm this.

We provide a detailed study of parameters and their influence as supplementary material [10].
These experiments made it possible to identify several sets of parameters which reach the trade-off
we pointed out above.

We finally conducted independent measurements from more than one hundred monitors scat-
tered around the world, towards sets of 3 000 destinations chosen at random among valid ip ad-
dresses. We sent probes at a maximal distance of 30 hops, and waited for answers until a timeout
of 2 seconds. With these parameters, each ego-centered measurement lasted around 4 minutes.
As we wait 10 minutes between two rounds (to reduce the network load), we obtain one such
measurement every 14 minutes approximately, or close to 100 per day. We ran these measure-
ments continuously during several months, thus obtaining a very rich dataset which we provide as
supplementary material [10].

Events in the dynamics.
The most natural idea to detect events in the dynamics captured by a radar measurement from

a given monitor certainly is to study the number Ni of nodes observed at each round i. We plot
it for a typical case in Figure 3 (middle row, black plot). Clear events appear under the form of
sharp decreases of Ni for some values of i, but this brings little information: most such decreases
are due to local failures of the network through which the monitor accesses the internet, which
suddenly make its ego-centered view almost blank. Instead, we notice that this plot exhibits no
sharp increase, which is confirmed by the distribution of the Ni for all i, plotted in Figure 3 (top row,
black plot). This is a nontrivial fact, as one may very well imagine scenarios where such increases
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would appear. In practice, however, the value of Ni is very stable, except for sharp decreases which
bring little information, if any.
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Figure 3: Middle row: plot of the number of distinct nodes Ni (resp. N(i−9)..i) observed during
each round (resp. ten consecutive rounds) of measurement, as a function of time. Top row: the
distributions of these values, which confirms that Ni exhibits abnormally small values only, never
abnormally large ones, unlike N(i−9)..i. Bottom row: topology changes observed during an event
identified by an abnormally large value of N(i−9)..i, with a zoom on the part of the network where
the event occurred.

The fact that the number Ni of nodes observed at each round i is very stable does not mean
that there is no dynamics: consecutive rounds may consist of very different sets of nodes with the
same size. Suppose for instance that we conduct a radar measurement of the network in Figure 1
from monitor h. Let us consider the i-th round of measurement, for a given index i at which the
ego-centered measurements from h is the one depicted in Figure 1 (left). Then suppose that at
round i+ 1 the path from h to w changes to h–q–o–k–f–w; and that at round i+ 2 the path from
h to w changes to h–q–o–k–p–w and the one from h to t changes to h–q–s–t. In this situation, we
have Ni = Ni+1 = Ni+2 = 13, despite the fact that the ego-centered views changed significantly.
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Such changes may be observed in the number of distinct nodes seen in series of consecutive
rounds. Suppose for instance that, in the scenario above, the ego-centered view from h did not
change from round j to round i, for a j < i. Then the number of nodes observed during three
consecutive rounds experiences an increase of more than 23%: if we denote by Nx..y the number
of distinct nodes observed from rounds x to y, then we have Nj..(j+2) = N(j+1)..(j+3) = . . . =
N(i−2)..i = 13, but N(i−1)..(i+1) = 14 and Ni..(i+2) = 16 > N(i−2)..i + 23%.

Similarly, we display in Figure 3 (middle row, blue plot) the number of nodes observed in ten
consecutive rounds in a typical practical case, which exhibits significant increases, thus revealing
events in the dynamics (it also experiences significant decreases, which we removed to improve
readability, as they indicate local network failures only).

This plot has another key feature: the observed values are well centered around a typical value
but also reach some extremal outlier values, see the distribution plotted in Figure 3 (top row, blue
distribution). This means that the sharp increases indeed reveal events in a rigorous statistical
sense.

Finally, we are able to point out precise times where events occur in the dynamics of the
observed topology. This opens the way to further investigation of the shape and nature of these
events, for instance by drawing the topology and the changes it experienced at these precise times.
We display a typical case in Figure 3 (bottom row): it shows that, whereas the dynamics is in
general scattered in all the network, the events we detect correspond to a significant change in a
specific part of the topology. This confirms that these events make sense from a networking point
of view. They correspond to major changes in specific parts of the internet, which we are able to
automatically detect at a time scale of a few minutes, much more precisely than all previous work
in this area.
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– Supplementary material –

Related work.
Mapping the internet is a very active area [43, 24, 11, 26, 20, 29, 14, 47, 22, 45, 34, 16], to

which our work is naturally related. In particular, there is a constant effort in designing more
accurate and powerful measurement tools [13, 12, 19, 18, 17, 30, 46, 49, 44, 22, 45, 43]. Some of
them aim (at least in part) at reducing the load induced on the network [19, 18, 17, 44, 22, 45, 43],
and in this context the idea of backward probing in order to avoid redundancy has already been
studied in depth [17]. Donnet et al, in particular, proposed the DoubleTree algorithm as a way to
reduce significantly this redundancy, and provide a prototype [19, 18] directed towards massively
distributed measurements [11].

The idea of routing tree collection also naturally occurs in multicast studies, and several tools
have been proposed in this context [33, 41, 42, 28]. Pansiot even conducted daily multicast mea-
surements for approximately two years and studied the observed dynamics [33]. All these authors
generally insist on the fact that a tool like tracetree would be of high interest.

Studying the dynamics of the internet’s topology as a whole also received some attention, both
at AS (Autonomous System), router, and interface levels [37, 38, 31, 15, 36, 35]. Because of the
sheer size of the internet and the difficulties encountered in measuring it, these studies consider
relatively coarse grained measurements (several orders of magnitude coarser than ours) and focus
on basic properties like size, degrees, or diameter. Their aim is to describe long-term evolution of
the internet (like its growth for instance).

Other contributions deal with routing anomalies and dynamics at bgp or traceroute levels, see
for instance [13, 12, 21, 48, 39, 25]. They study wide varieties of phenomena, like load balancing,
routing stability, node reachability, routing convergence, etc.

Unbalanced load induced by traceroute ego-centered measurements.
One may use traceroute directly to collect ego-centered views by probing a set of destinations.

This approach however has serious drawbacks. First, as detailed in [18], the measurement load is
highly unbalanced between nodes and there is much redundancy in the obtained data (intuitively,
one probes links close to the monitor much more than others). Even worse, this implies that the
obtained information is not homogeneous, and thus much more difficult to analyze rigorously.

Figure 4 illustrates this imbalance. The distribution of the link load (left) shows that some links
are probed a very high number of times with traceroute, up to 3 000 times. This load is placed
on links close to the monitor (center, black plot): a very large number of probes are sent a small
distance from the monitor. Comparatively, our tracetree tool imposes a much lighter load: it sends
a much smaller number of probes, in particular to links close to the monitor (Figure 4, center,
blue plot). Finally, repeated ego-centered measurements with tracetree discover more ip addresses
(and therefore more interesting information) with fewer probes sent than comparable traceroute
measurements (Figure 4, right).

The tracetree tool. 2

As already discussed in various contexts [19, 18, 17, 33, 30, 45], one may avoid the issues
described above by performing tree-like measurements in a backward way: given a set of destinations
to probe, one first discovers the last link on the path to each of them, then the previous link on

2An open-source implementation is available at [10].
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Figure 4: Left: typical link load distribution with a traceroute ego-centered measurement. For each
value x on the horizontal axis, we give the number of links which are discovered x times during
a traceroute ego-centered measurement with 3 000 destinations (base value). In an equivalent
tracetree measurement, exactly one probe is sent for each link. Center: number of probes sent, as a
function of the distance from the monitor, with traceroute and tracetree ego-centered measurements
with 3 000 destinations. Right: number of distinct ip addresses discovered with several successive
traceroute and tracetree ego-centered measurement rounds, as a function of the number of probes
sent.

each of these paths, and so on; when two (or more) paths reach the same node then the probing
towards all corresponding destinations, except one, stops.

Note that this requires knowing the distance towards each destination, which is not trivial [30].
This plays a key role here, since over-estimated distances lead to several packets hitting destinations.
Under-estimated distances, instead, miss the last links towards the destinations. Each tracetree
measurement therefore relies on an estimation of the distance towards each destination (we detail in
the next section how we obtain this estimation). If the distance is over-estimated, then more than
one packet reaches the corresponding destination; we only output the information corresponding
to the last packet to which the destination replies, which corresponds to the accurate distance. If
the distance happens to be under-estimated (we do not see the destination at this distance), then
we set it to a default maximal value (generally equal to 30) and start the measurement from there.

However, as illustrated in Figure 5, such naive measurements encounter serious problems be-
cause of routing changes and other events. We provide a solution in the tracetree algorithm below:
the tree nodes are not ip addresses anymore, but pairs composed of an ip address (or a star if a
timeout occurred) and the ttl at which it was observed (see Figure 5 for an illustration). This is
sufficient to ensure that the obtained view is a tree, while keeping the algorithm very simple. It
sends only one packet for each link, and thus is optimal. Moreover, each link is discovered exactly
once, which gives an homogeneous view of the topology and balances the measurement load.
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Algorithm 1: tracetree algorithm.

Input: set D of destinations, with d ∈ D at distance ttld.
to probe ← empty queue, to receive ← ∅, seen ← ∅
foreach d ∈ D do add (d, ttld) to to probe
while to probe not empty or to receive 6= ∅ do

α if to probe not empty then
pop (d, ttl) from to probe and send a probe to it
add (d, ttl, current time()) to to receive

// here necessarily to receive 6= ∅
β if answer p to a probe to (d, ttl) received then

// p sent by p.source, reply to a probe to (d, ttl)

if (d, ttl, ) ∈ to receive then
// else timeout

remove (d, ttl, ) from to receive;
print p.source ttl d
if (p.source, ttl) 6∈ seen then

add (p.source, ttl) to seen
push (d, ttl − 1) in to probe if ttl > 1

for (d, ttl, t) ∈ to receive if timeout exceeded do
remove (d, ttl, t) from to receive
print * ttl d
if ttl > 1 then

push (d, ttl − 1) in to probe

From such trees with (ip,ttl) nodes, one obtains a tree on ip addresses by applying the following
filter (illustrated in Figure 5) 3: first merge all nodes of the tree which correspond to the same ip;
remove loops (links from an ip to itself); iteratively remove the stars with no successor; merge all
the stars which are successor of a same node into a unique star; construct a bfs tree of the obtained
graph which leads to a tree on ip addresses; iteratively remove the leaves which are not the last
nodes encountered when probing any destination.

The key point is that the obtained tree is a possible ip routing tree from the monitor to the
destinations (similar to a broadcast tree). The obtained tree contains almost as much information
as the original tracetree output and has the advantage of being much more simple to analyze. We
evaluated the impact of this filtering on our observations, and found that it was negligible.

Many non-trivial points would deserve more discussion. For instance, one may apply a greedy
sending or receiving strategy (by replacing line α or β in Algorithm 1 by a while, respectively);
identifying reply packets is non-trivial, as well as extracting the relevant information from the
read packets; introducing a delay may be necessary to stay below the maximal icmp sending rate
of the monitor; one may consider answers received after the timeout but before the end of the
measurement (whereas we ignore them); one may use other protocols than icmp (the classical
traceroute uses udp or icmp packets); the initial order of the destinations may have an impact on

3The measurement would be slightly more efficient if the filter was included directly in tracetree; however, to keep
things simple and modular, we preferred to separate the two.
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Figure 5: Typical outputs of various measurements schemes. (1) – Real topology. a is the monitor,
n, o, and p are the destinations. We suppose that l does not answer to probes, that b is a per-
destination load balancer, forwarding traffic for n to d, and traffic for o to f , and that e is a
per-packet load balancer forwarding packets alternately to i and h. Such situations are frequent in
practice. (2) – Measurement with traceroute. Three routes are collected, leading to a higher load
on links close to the monitor (represented by thicker lines here). (3) – Naive tree measurement.
Because of a route change due to per-packet load balancer e, one obtains a disconnected part. (4)
– Measurement with tracetree. Nodes are pairs of ip addresses and ttl, with redundancy in the
addresses; one necessarily obtains a tree. (5–7) – Main steps of the filtering process. (5) – Pairs
with same ip address are merged and loops are removed; (6) – Appropriate stars are merged and
a bfs tree is computed; (7) – Leaves which are not the last node on a path towards a destination
are iteratively removed. This is the final output of the filter.

the measurement; there may be many choices for the bfs tree in the filter; etc. However, entering
in such details is far beyond the scope of this paper, and we refer to the code and its documentation
[10] for full details.

Radar measurements.
With the tracetree tool and its filtered version, we have the ground material to conduct radar

measurements: given a monitor and a set of destinations, it suffices to run periodic ego-centered
measurements. The measurement frequency must be high enough to capture interesting dynamics,
but low enough to keep the network load reasonable. We will discuss this in the next section.

We also use each tracetree measurement to estimate the distances towards all destinations for
the next round of measurement: one may indeed suppose that the distance between the monitor
and any destination generally is stable between consecutive rounds. Then, the distances at the
start of a given round are the ones observed during the previous round (or the maximal value if
the destination was not seen).

Influence of parameters.
First notice that many parameters (including the monitor and destination set) may have a

deep impact on the obtained data. Estimating this impact is a challenging task since testing all
combinations of parameters is totally out of reach. In addition, the continuous evolution of the
measured object makes it difficult to compare several measurements: the observed changes may be
due to parameter modifications or to actual changes in the topology.

To bypass these issues while keeping the study rigorous, we propose the following approach.
We first choose a set of seemingly reasonable parameters, which we call base parameters. Those
parameters are described in Table 1. Then we conduct measurements with these parameters from
several monitors in parallel. On some monitors, called control monitors, we keep these parameters
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Parameter Base value

# destinations 3 000
choice of destinations random, answering to ping
choice of monitor PlanetLab
maximal ttl 30
timeout 2s
delay between rounds 10 minutes

Table 1: Parameters of our radar measurements, and base values of these parameters.

constant; on others, called test monitors, we alternate periods with base parameters and periods
where we change (generally one of) these parameters. Control monitors make it possible to check
that the changes observed from test monitors are due to changes of parameters, not to events on
the network. The alternation of periods with base parameters and modified ones also makes it
possible to confirm this, and to observe the induced changes in the observations. In many cases,
it is also possible to simulate what one would have seen in principle if the parameters had stayed
unchanged, which gives further insight (we will illustrate this below).

We focus on a few representative parameters only, the key conclusion being that the base
parameters fit our needs very well.

Figure 6 (left) shows the impact of the inter-round delay: on the rightmost part the delay was
significantly reduced, leading to an increase in the observation’s time resolution (i.e. more points
per unit of time). It is clear from the figure that this has no significant impact on the observed
behavior. In particular, the variations in the number of ip addresses seen, though they have a
higher resolution after the speed-up, are very similar before and after it. Moreover, the control
monitor shows that the base time scale is relevant, since improving it does not reveal significantly
higher dynamics.

Figure 6 (middle) shows the impact of the number of destinations. As expected, increasing this
number leads to an increase in the number of observed ip addresses. The key point however is that
increasing the number of destinations may lead to a relative loss of efficiency: simulations of what
we would have seen with 3 000 or 1 000 destinations display a smaller number of ip addresses than
direct measurements with these numbers of destinations (the control monitor proves that this is
not due to a simultaneous topology change). This is due to the fact that probing towards 10 000
destinations induces too high a network load: since some routers answer to icmp packets with a
limited rate only [23], overloading them makes them invisible to our measurements. Importantly,
this does not occur in simulations of 1 000 destination measurements from ones with 3 000, thus
showing that the load induced with 3 000 destinations is reasonable, to this regard.

Figure 6 (right) shows the impact of the timeout value. As expected, decreasing the timeout
leads to a decrease in the round duration. However, it also causes more replies to probe packets to
be ignored because we receive them after the timeout. A good value for the timeout is a compromise
between the two. We observe that the round duration is only slightly larger with a timeout of 2s
than with a timeout of 1s (contrary to the change between a timeout of 4 and 2s). The base value
of the timeout (2s) seems therefore appropriate, because it is rather large and does not lead to a
long round duration.
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Figure 6: Impact of measurement parameters. Left: impact of inter-round delay. Number
of distinct ip addresses viewed at each round. The bottom plot corresponds to a control monitor
with the base parameters; the other monitor starts with the base parameters, and about 27 hours
later we reduce the inter-round delay from 10 minutes to 1 (each ego-centered measurement takes
around 4 minutes). Center: impact of the number of destinations. Number of distinct ip
addresses viewed at each round. The plot close to y = 10 000 corresponds to a control monitor with
the base parameters. The other plain-line plot is produced by a monitor which starts with the base
parameters, thus with a destination set D of size 3 000, changes to a set D′ of 10 000 destinations
containing D, goes back to D, and finally turns to a subset D′′ of size 1 000 of D. In addition,
the dotted plots are simulations of what we would have seen from this monitor with D during
the measurement using D′ (obtained by dropping all nodes and links which are on paths towards
destinations that are not in D), and what we would have seen with D′′ during the measurements
using D or D′ (obtained similarly). Right: impact of timeout value. Round duration (in
seconds). The monitor starts with a timeout value of 4 s, then we change it to 2 s, and finally to
1 s.

We also considered other observables (like the number of stars seen at each round, and the
number of packets received after the timeout), for measurements obtained from various monitors
and towards various destinations; in all cases, the conclusion was the same: the base parameters
meet our requirements.

Dataset.
Finally, we ran massive radar measurements. We use a wide set of more than one hundred mon-

itors scattered around the world, provided by PlanetLab [40] and other structures (small companies
and individual dsl links) [10].

In order to be as general as possible, and to simplify the destination setup, we used destinations
chosen by sampling random valid ip addresses and keeping those answering to ping at the time of
the list construction.

All our measurements were conducted with variations of the base parameters (see Table 1);
wherever it is not explicitly specified, the parameters were the base ones. We ran measurements
continuously during several weeks, with some interruptions due to monitors and/or local network
shutdowns. The obtained data is available at [10].

Observed growth.
A most natural assumption is that radar measurements first discover basically all the ip ad-

dresses visible from the monitor, and then enter a regime where only major changes in the network
cause new ip addresses to appear. Indeed, the number of distinct ip addresses one can see during
a radar measurement is necessarily bounded, at the very least by the total number 232 of possible
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Figure 7: Left: Number of distinct ip addresses observed since the beginning of the measurement
as a function of time. Center: Number of ip addresses observed in at least 2, 10, 50, 200 or 1 000
different rounds since the beginning of the measurement. Right: Number of distinct ip addresses
seen with stable destinations only.

addresses. Therefore, after a sufficient number of rounds, one has necessarily seen all the ip ad-
dresses which can be seen from this monitor. One may expect that this number of rounds is rather
small, but no study ever gave evidence for this intuition.

The study of our data however shows that it is actually quite false [27]. Figure 7 (left) shows
that, even after several thousands rounds of measurements, the number of distinct ip addresses
seen since the beginning still significantly grows. In the example of the figure, one discovers during
the last week of two-months measurements 1 118 new ip addresses (on a total of 29 100).

This seemingly never-ending growth of the number of distinct ip addresses seen is strikingly
counter-intuitive. However, one may try to explain it by two possible measurement artifacts.

One possible cause for these observations would be that some routers reply with random ip
addresses; Figure 7 (center) show that this is not the case. Indeed, in this case, the growth would
only concern ip addresses observed only once, or a small number of times. When restricting our
observations to ip addresses observed in a larger and larger number of rounds (up to 1 000), we
however still discover new addresses consistently. This means that addresses observed only once or
a small number of times are not the main causes for our observations.

Another possible cause would be that some of our destinations are dynamic addresses, i.e.
dynamically allocated to different hosts over time. Since such hosts could be in different locations,
depending on network operation, these dynamic addresses could lead us to discover new paths and
as a result new addresses in the measurements.

Figure 7 (right) shows that this is not the case. The idea is to select the destinations that were
stable during the measurements. Using a similar approach to geolocation studies (see for instance
[32]), we considered that a destination address is not dynamic if the address immediately before it
in the measurements is always the same; 35 out of 3 000 destinations satisfied this condition. We
then simulated the measurements by keeping only these stable addresses, and we still clearly see
a constant appearance of new ip addresses: dynamic addresses are therefore not the cause of this
renewal 4.

*References

4Note that our criterion for characterizing stable addresses is very restrictive; we do not imply that the addresses
that do not satisfy it are dynamic. We tested other criteria, which provided the same results.
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