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Abstract

It appeared recently that the classical random graph model used
to represent real-world complex networks does not capture their main
properties. Since then, various attempts have been made to provide
accurate models. We study here the first model which achieves the
following challenges: it produces graphs which have the three main
wanted properties (clustering, degree distribution, average distance),
it is based on some real-world observations, and it is sufficiently simple
to make it possible to prove its main properties. This model consists
in sampling a random bipartite graph with prescribed degree distri-
bution. Indeed, we show that any complex network can be viewed as
a bipartite graph with some specific characteristics, and that its main
properties can be viewed as consequences of this underlying structure.
We also propose a growing model based on this observation.

Introduction.

When one wants to model a real-world object (in the sense of producing an
artificial object similar to the real one), one first has to get some information
on its properties, generally using a measurement procedure and an analysis
of the result of this measure. There are then basically two ways to propose
a model.

First, one may consider a set of observed properties as essential, and then
sample randomly objects among the ones which have these properties. One
obtains this way a typical object with the properties in concern. It is then
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possible to determine if the retained set of properties is sufficient (do the
random objects produced by the model fit well the real one?) and to study
the expected behavior of the object of interest. The relevance of the set of
properties is generally checked using other known properties or behaviors of
the object.

The other modeling approach is to define a construction process inspired
from the way the object is really constructed. This construction process is
generally iterated from an initial state, and eventually leads to an appropriate
object. The analysis then concerns the properties induced by the construction
process: do they fit real-world properties?

The first method is in general more suitable for analysis, and more rig-
orous, but it may be very difficult to sample a random object in a given
class. On the opposite, the second approach generally gives a simple sam-
pling scheme and has the advantage of producing evolving objects. But the
construction process may induce some properties which do not correspond
to any reality, and is in general difficult to analyze.

It has been shown recently that most real-world complex networks have
some essential properties in common. These properties are not captured by
the model generally used before this discovery, although they play a central
role in many contexts like the robustness of the Internet [6, 19, 20, 15, 49],
the spread of viruses or rumors over the Internet, the Web or other social
networks [48, 52, 58], as well as the performance of protocols and algorithms
[36, 41, 63].

This is why, in the last few years, a strong effort has been put in the real-
istic modeling of complex networks, both in computer science, mathematics
and physics, and much progress has been accomplished in this field. Some
models achieve the aim of producing graphs which capture some, but not all
of the main properties of real-world complex networks. Some models obtain
all the wanted properties but rely on artificial methods which give unrealistic
graphs (trees, graphs with uniform degrees, etc). Others rely on construction
processes which may induce some hidden properties, or are too difficult to
analyze.

In this paper, we propose the random bipartite graph model as a general
model for complex networks. It has all the advantages we have just cited,
without the drawbacks. It produces graphs with all the wanted properties.
It relies on real-world observations and gives realistic graphs. Finally, it is
simple enough to make it possible to prove its main properties.

We will first present an overview of the context in which our work lies.
In particular, we use some ideas introduced in previous papers, which we
need to describe precisely. Then we show how all complex networks may be
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described as bipartite structures. After this, we present the random bipartite
model and analyze it to show that the main properties of complex networks
are somehow a consequence of their underlying bipartite structure. We also
present a growing bipartite model based on the same ideas. Finally we discuss
the advantages and limitations of these models.

1 Context.

Throughout our presentation, we will use a representative set of complex
networks which have received much attention and span quite well the variety
of contexts in which complex networks appear. These complex networks
can be divided in three main classes, namely social networks, technological
networks and biological ones. The set consists of:

• Internet. The interconnection of routers (or AS) on the Internet can
be modeled by graphs where the nodes are routers (or groups of routers)
linked with physical links. We use several graphs from [16, 32, 33]

• Web. The hyperlinks between Web pages give a natural graph struc-
ture to the World Wide Web [14, 37]. We will use here the Notre Dame
Web graph from [5, 23].

• Cooccurrence. When one considers a book, or the queries to a search
engine, or a chat on an interactive system for instance, one can con-
struct a co-occurrence graph by linking two words if they appear in the
same sentence or query [31]. Here, we will use a version of the Bible
[62].

• Actors. In this social network, two actors are connected if they have
played together in a movie. This graph is widely studied for many
reasons: it is very large, well representative of social networks, evolv-
ing with each new movie produced, and easily available through the
Internet Movie Database [24, 64].

• Coauthoring. Another way to link people is according to their scien-
tific publications: two scientists are linked if they have signed a paper
together [50, 51, 56]. We will use such a graph obtained from the Los
Alamos preprint archive [7].

• Proteins. In [35] the authors link together two proteins of a given
biological system if they influence each other. We will consider this
example too, using graphs from [23].
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Many other complex networks have been studied. Refer to [4, 26, 54] for
a more descriptive list of networks and corresponding references. All these
networks have some properties in common which have been discovered quite
recently and have concentrated a large attention in various communities.
Hereafter we present the properties in concern and some recent efforts in the
modeling of these properties.

1.1 Statistical properties

Most real-world complex networks have a number of edges m which scales
linearly with the number of vertices n: m ∼ k · n where k is the average
degree (which does not depend on the size of the graph). Therefore, these
networks have a low density (going to 0 when n grows), the density being
defined as the number of existing edges over the number of edges that could
exist.

Three other properties received recently much attention due to the fact
that they have unexpected behaviors in real-world complex networks: the
average distance between vertices, the clustering and the degree distribution.

The distance between two vertices, defined as the number of edges on a
shortest path between these vertices, is low on average. It is a well known
property on social networks since the work of Stanley Milgram [43] and the
notion of “six degrees of separation”. However it appeared more recently
that all complex networks have a low average distance which typically scales
like the logarithm of the size of the graph. It has been shown that this
is actually true for any graph which contains some resaonable amount of
randomness. Actually, under reasonable assumptions, the average distance
in random graphs scales even slower than the logarithm 1 of their size [12,
18, 21, 28, 39, 55, 56].

The local clustering [64] is defined for each vertex of degree at least 2 as

the proportion of edges between its neighbors: c(u) = |{(x,y),x,y∈N(u)}|
(d(u)

2 )
, where

d(u) is the degree of vertex u and N(u) is the set of neighbors of u. The global
clustering is simply the average over all individual values. Another definition
(a global one) set the clustering of a graph to be the ratio of the number of
triangles (three vertices all connected) over the number of connected triples

(three vertices with at least two edges) [56]: cg(u) = 3·|4|
|∧| . Even if both

definition are not strictly equivalent, one can understand the clustering as
a measure of the local density of a graph: it is the probability that two
neighbors of a vertex are connected together. Hereafter we are going to use
the first definition which is more widely accepted. Although most graphs

1Typically like the logarithm divided by the logarithm of the logarithm.
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Internet Web Actors Co-auth Co-occur Protein

n 75885 325729 392340 16401 9297 2113

m 357317 1090108 15038083 29552 392066 2203

density 1.2e-4 2.1e-5 1.9e-4 2.2e-4 9.1e-3 9.9e-4

α 2.5 2.3 2.2 2.4 1.8 2.4

c 0.171 0.466 0.785 0.638 0.822 0.153

d 5.80 7 3.6 7.18 2.13 6.74

Table 1: The main statistics for the complex networks we use in this paper.
For each network, we give its number of vertices n, its number of links m, its
density, the value of the exponent α of the power law that fits best its degree
distribution, its clustering c, and its average distance d.

have a very low clustering (inversely proportional to the size of the graph
if m ∼ k · n), all real-world complex networks have a high clustering which
seems to be independent of the size of the network.

Finally, the degree distribution which is, for each k, the probability pk
that a randomly chosen vertex has degree k, is completely different from
what was expected. Indeed for almost all real-world complex networks, the
degree distribution follows a power law: pk ∼ k−α, while one would have
expected an exponential decrease (Poisson-like distributions). The exponent
α of the power law is generally between 2 and 3. Such a distribution means
that although most vertices have a small degree, the number of vertices with
degree k decays only polynomially with k, and therefore there is a significant
number of vertices with high degree.

The main properties of the real-world complex networks we use in this
paper are given in Table 1. Notice that, as announced, all these real-world
complex networks have a very low density, a low average distance, a power
law distribution of degrees and a high clustering.

The similarity of these networks concerning unexpected properties has led
to the study of other properties. The simplest one concerns the degree-degree
correlation: what is the average degree of the neighbors of a vertex of degree
k. Three main behaviors are expected, either high-degree vertices tend to
connect to high-degree vertices, or to low-degree vertices, or to any nodes.
These behaviors can be observed using the the slope (increasing, decreasing
or constant) of the plot which relates the average degree of the neighbors of
nodes of degree k, to k [10, 60, 61], or with a single parameter (assortativity
coefficient), which may be positive (assortative networks), negative (dissor-
tative networks) or null (neutral networks) [53]. Most social networks are
assortative (similar vertices are connected) while technological or biological
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are generally dissortative.
One may also correlate the clustering and the degree by computing the

average clustering of vertices having a given degree. This also defines assor-
tative (high degree yields high clustering), neutral or dissortative networks.

Finally, other properties have been studied, such as the centrality (how
many shortest paths contain a given vertex) [51], the distribution of eigen-
values of the adjacency matrix [30, 42], etc. All these statistical properties
are used to describe a given complex network and to study the similarities
and differences between several complex networks. They give precise insight
on what one may expect when considering a complex network having a set
of properties.

1.2 Modeling complex networks

The basic model for complex networks is the Erdös-Rényi (ER) random graph

model [12, 29]. In a random graph with n vertices, each of the n·(n−1)
2

possible
edges exists with a given probability p (this model is know as Gn,p). In an
equivalent way when n tends to infinity [12, 29], one may construct such a

random graph from n vertices by choosing m = p · n·(n−1)
2

edges at random
(Gn,m model).

In such a graph, it is known that the average distance scales with the
logarithm of n [12]. Moreover, the clustering is equal to the connection
probability p since each pair of vertices is connected with the same probability
independently of the fact that they are both linked to a same vertex. If
m ∼ k · n as in real-world complex networks, this means that the clustering
scales as n−1 and therefore tends to 0 when n grows. Finally, the degree
distribution follows a Poisson law pk ∼ e−λ λ

k

k!
[12], which implies in particular

that the number of vertices with degree k decays very rapidly around the
average degree, and therefore all vertices have nearly the same degree.

Therefore, although this model can be considered as relevant concerning
the average distance, it misses the two other main properties of real-world
complex networks. In particular, the degree distributions are qualitatively
different.

It is however possible to sample uniformly a random graph with a given
degree distribution (in particular a power law) [11, 40, 45, 46] using the
Molloy and Reed 2 (MR) model: for each vertex, draw its degree at random
according to the given distribution, create as many connection points as its

2Despite it has been introduced in [9] and studied in [11], this model is commonly
refferred to as the Molloy and Reed model since these authors made it popular in their
contributions [45, 46]. We will follow this convention here.
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degree and finally connect pairs of connection points at random3 (Figure 1).
Notice that the degree distribution can be explicitly described (four nodes of
degree 1 and one node of degree 4 for instance) or implicitly defined (power
law with exponent 2.2 for instance).

The power law graphs obtained this way have an average distance which
scales slower that the logarithm 4 of their size [18, 21, 28, 39, 55, 56]. More-
over, the fact that vertices are linked together purely at random (only their
number of edges is given) makes it possible to study the properties of the
obtained graphs, and it indeed seems that it captures some of the most im-
portant behaviors of complex networks [2, 18, 39, 54, 58]. However, under
reasonable assumptions on the degree distribution, the clustering of these
graphs tends to zero when n grows [54].

Figure 1: MR model with prescribed degree distribution. Pairs of connec-
tion points are randomly chosen to create the links, while the number of
connection points of every node follows a given distribution.

Both the purely random graph model and the one with prescribed degree
distribution belong to the class of models which sample uniformly at random
a graph among the ones with a given set of properties (number of vertices
and average degree for the first, number of vertices and degree distribution
for the second). This approach could in principle be continued, and sampling
a random graph among the ones having a given number of nodes, a given
degree distribution and a given clustering would certainly be an excellent
model. However, until now, there is no known method to sample such a
graph, and the problem seems difficult.

On the other hand, a large variety of models based on the iteration of a
construction process inspired from the way complex networks grow in reality
have been introduced.

3Note that this algorithm may induce multiple links and loops. Since, under reasonable
assumptions, their number goes to 0 when the graph grows, they are usually neglected in
complex network studies. We will follow this convention here. One may also use techniques
to avoid them, see for instance [38, 44]i, but this is out of the scope of this paper.

4Typically like the logarithm divided by the logarithm of the logarithm.

7



The first generic model of real-world complex networks, and one of the
most famous, has been introduced in 1998 by Watts and Strogatz (WS) [64].
One starts with a ring of n vertices in which each vertex is connected to its
k nearest neighbors, for a given k. Then, each edge is rewired with a given
probability p by choosing randomly a new extremity (Figure 2).

p=0 p=0.25 p=0.5 p=0.75 p=1

RandomRegular

Figure 2: WS model: between regularity and randomness the graph has both
low average distance and high clustering.

Simulations of this model confirm the basic following intuition: the av-
erage distance is high (linear in n) if p is small, since only a few edges are
rewired and so the graph is almost a ring. Notice however that, since each
vertex is connected to its nearest neighbors, these neighbors are linked to-
gether and so the clustering is high. On the other hand, if p is high, then
almost all the edges are rewired, and so the graph is similar to a random
graph: the average distance is low and so is the clustering. For medium val-
ues of p, the graph has both a small average distance and a high clustering,
which corresponds to two general properties of complex networks. Moreover,
some properties of this model can be formally studied (see for instance [25]),
but the degree distribution of the obtained graphs does not follow a power
law.

Another important step was done when Albert and Barabási (AB) in-
troduced their model based on preferential attachment [3, 27]. The idea can
be well understood if we think about the way new Web pages connect to
existing ones. Intuitively, when one creates a new Web page, one more likely
connects it to a well known one rather than to a randomly chosen one. Since
a page tends to be more famous when it has more links pointing to it, a new
Web page tends to connect to well connected Web pages.

This “rich gets richer” or “popularity is attractive” principle can be de-
rived in a model where vertices arrive one by one in a graph and choose their
neighbors with a probability proportional to the degree of these neighbors.
This model has been studied intensively and is now well known (see [4] for
a survey of its properties). For instance, the degree distribution follows a
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power law with exponent 3. The average distance of such a graph is loga-
rithmic in the number of vertices, and the clustering is low, going to 0 when
the number of vertices grows. Despite this last point, this model has received
much attention, in particular because it defines growing graphs. We will see
in Section 3 that the preferential attachment principle can be used to define
a growing bipartite model with interesting properties.

Both the WS model and the AB one have been introduced to model
generic behavior of complex networks. However, they both fail in producing
graphs having each of the three properties we cited. The WS model gives
a possible explanation for the high clustering of complex networks which is
the locality of the links. On the other hand the AB model gives an explana-
tion to the power law degree distribution with the “preferential attachment”
principle. Both concepts have been widely used as building blocks for more
complex models.

One of them is the Dorogovstev and Mendes (DM) model which gener-
ates highly clusterised graphs with a power law degree distribution [26]. This
model is very similar to the AB model: for each newly created vertex, an
edge is chosen at random and the new vertex is connected to both extremities
of the edge. Since high-degree vertices have more edges, they are more likely
to be chosen. The preferential attachment is therefore hidden in this model.
Moreover, each new vertex is linked to two previously connected vertices,
which creates a triangle and induces high clustering. However the parame-
ters of this model cannot be tuned and it has some unexpected properties
(for instance, there is no node of degree 1 and it produces planar graphs 5).
Therefore we are not going to use it hereafter.

Some deterministic models, which we do not detail here, have also been
introduced [8, 22] which produce the wanted properties and are suitable for
analysis. However, they cannot be considered as realistic and the obtained
graphs have specific properties which make them very different from real-
world complex networks.

Many other attempts have been made to reach the goal of obtaining
growing models which give graphs having each of the three main properties
we have cited. Most of them are described in [4, 26, 59]. However, all these
models fail to give an intuitive, realistic and simple interpretation of the
causes of the observed properties. Even if these models are based on the
simulation of a construction process inspired from reality, which makes them
more realistic, the drawback comes from the difficulty to analyze them in
general. Finally, as already stressed, the construction process may induce

5A graph is planar iff it can be embedded in the plane so that no edges intersect.
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Internet Web Actors Co-auth Co-occur Protein

n 75885 325729 392340 16401 9297 2113

m 357317 1090108 15038083 29552 392066 2203

c 0.171 0.466 0.785 0.638 0.822 0.153

cER 0.0001 0.00002 0.0002 0.0002 0.009 0.001

cMR 0.0694 0.017 0.0057 0.001 0.26 0.007

cAB 0.0024 0.0005 0.0015 0.003 0.028 0

cWS 0.171 0.461 0.74 (*) 0.523 (*) 0.74 (*) 0.06 (*)

d 5.80 7 3.6 7.18 2.13 6.74

dER 5.25 5.47 2.97 7.57 2.06 10.4

dMR 3.25 4.48 2.95 5.77 2.36 5.73

dAB 4.15 5.1 2.93 5.5 2.38 8.15

dWS 5.90 11.23 2559 (*) 2269 (*) 55.6 (*) 509 (*)

Table 2: Performance of the main generic models for complex networks. For
each network, we give its number of vertices n, its number of links m, its
clustering c, and its average distance d. Moreover, we give the values of
these parameters for typical graphs with the same number of vertices and
edges obtained with commonly used models: the ER model (cER and dER),
the MR model (cMR and dMR), the AB model (cAB and dAB), and the WS
model (cWS and dWS). The cases pointed by a star (*), the real clustering
is too large to be obtained with the WS model. Therefore we used in these
cases the parameters inducing the maximal clustering, which yields very large
average distances.
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density average distance degree dist clustering
ER OK OK NO NO
MR OK OK OK NO
AB OK OK OK NO
WS OK OK NO OK

Table 3: Properties captured by the main current models.

some unwanted properties on the obtained graphs.

Table 2 shows the performances obtained with the main models we cited
in our practical cases. Let us insist on the fact that the models seek qual-
itative properties (non negligible clustering, power law degree distribution,
etc). Their aim is not to produce graphs with exactly given values for these
properties. However, even with this in mind, the graphs obtained using these
models are significantly different from real-world ones concerning at least one
of these three points.

1.3 Current state of the art

This overview of complex networks analysis and modeling shows that al-
though much progress has been accomplished, we still do not have any real-
istic model to produce graphs with the three main properties of real-world
complex networks: small average distance, high clustering and power law de-
gree distribution (see Table 3 for a synthetic view of the properties captured
by the main models). The random sampling of graphs among the ones having
a set of properties seems natural and promising. It leads to rigorous studies
and strong insight on how real-world complex networks behave and on the
influence of their specific properties. However, there is no known method to
sample a graph with the three wanted properties: the clustering misses. On
the other hand, the models based on the iteration of a construction process
have inherent disadvantages, like the complexity of their analysis or hidden
unwanted properties possibly induced by the construction process. More-
over, until now, no realistic model of this kind has been introduced which
has the three wanted properties and has been rigorously studied. However,
these models have the important advantage of producing growing graphs, i.e.
graphs which grow during time. Notice also that the study of the way real-
world complex networks are constructed is highly relevant and is a challenge
in itself.

In this paper, we propose a solution to the random sampling of graphs
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which have all the three wanted properties. To achieve this, we focus on
another property of all real-world complex networks, namely their underlying
bipartite structure (Section 2). We then propose two models: the random
sampling of bipartite graphs with prescribed degree distributions, and the
growing bipartite model with preferential attachment (Section 3). Indeed, as
shown in Sections 4 and 5, respectively formally and experimentally, these
models induce the three wanted properties. This means that they can be
viewed as consequences of the underlying bipartite structure of all complex
networks, which is our main contribution.

2 Complex networks as bipartite graphs

A bipartite graph is a triple G = (>,⊥, E) where > and ⊥ are two disjoint
sets of vertices, respectively the top and bottom vertices, and E ⊆ > × ⊥
is the set of edges. The difference with classical graphs lies in the fact that
edges exist only between top vertices and bottom vertices.

Two degree distributions can naturally be associated to such a graph,
namely the top degree distribution: >k = |{t∈>:d(t)=k}|

|>| and the bottom degree

distribution: ⊥k = |{t∈⊥:d(t)=k}|
|⊥| . These two distributions play a central role

in the following.

Natural bipartite structures

As already noticed for instance in [55, 34], some complex networks display a
natural bipartite structure. Among our examples, one can view Actors (two
actors are linked if they are part of a same cast) as a bipartite graph where
> is the set of movies, ⊥ is the set of actors, and each actor is linked to the
movies he/she played in. Coauthoring can also be viewed this way with >
being the set of papers and ⊥ being the set of authors, each author being
linked to the papers he/she (co-)signed. Likewise, in Cooccurrence one can
link each sentence to the words it contains.

Given a bipartite graph G = (>,⊥, E), one can easily obtain its classical
version, also called ⊥-projection, defined as G′ = (⊥, E ′) where {u, v} is in
E ′ if u and v are both connected to a same (top) node in G. See Figure 3
for an example. From the bipartite versions of Actors, Coauthoring and
Cooccurrence graphs, one can then recover their classical versions. In the
⊥-projection of a bipartite graph, each top vertex induces a clique (complete
subgraph) between the bottom vertices to which it is linked: all actors of a
given movie have played together therefore they must be all linked.
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A B C D E F

A

B

E

D

C F

Figure 3: A bipartite network and its ⊥-projection. Notice that the link
{B,C} is obtained twice since B and C have two neighbors in common in
the bipartite network.

However, given the ⊥-projection of a bipartite graph, it is in general not
possible to recover the bipartite graph from which it has been obtained in an
unique way. Similarly if a graph is not naturally bipartite there may exist
many bipartite versions of it.

Recovering a bipartite structure

For the sake of completeness, we now recall and detail the decomposition
scheme we proposed in [34], which produces a bipartite graph from any given
graph, such that the latter is be the ⊥-projection of the obtained bipartite
graph. The aim of this scheme is that the obtained bipartite graph should
have properties similar to the ones met in natural bipartite graphs, namely
the number of top vertices has the same order of magnitude as the number
of bottom vertices and there are some high-degree top nodes (see below and
Figure 7).

First notice that the decomposition scheme is nothing but a clique cov-
ering problem: it computes a set of cliques (which will correspond to the
top nodes in the bipartite graph) such that each edge belongs to at least one
clique (which ensures that the ⊥-projection of the decomposition is exactly
the original graph). Simple ideas to cover the graph with cliques might be to
consider each edge as a clique, or to consider all maximal cliques. However,
the first approach would not yield large cliques while the second one could
yield too many cliques (the number of maximal cliques may be exponential).

To reach our goal, we proposed [34] the following decomposition. We pick
for each edge a largest clique containing it: a clique whose size is maximal
among the ones containing the edge. Notice that this clique may contain only
two vertices. Moreover, if there are several such cliques for the same edge,
we pick one at random. This decomposition ensures the complete covering of
the graph. Moreover, the number of cliques is at most equal to the number
of edges, which is of the order of the number of vertices. Finally since we
take largest cliques, we expect to find most of the large cliques contained in
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the graph.
In the case of Figure 3 we obtain several cliques of size 2 (namely {C,E}

and {D,F}), and we have to choose at random between {A,B,C} and
{B,C,D} when considering the edge {B,C}. However, these two cliques
are obtained from other edges, and we finally obtain a unique decomposition
which is nothing but the bipartite graph on the left of the figure.

The central aim of our decomposition scheme is, given the ⊥-projection
of a natural bipartite graph, to produce an artificial bipartite graph similar
to the original bipartite graph itself. A way to evaluate it is therefore to
decompose the ⊥-projection version of a natural bipartite complex network
and to compare the obtained bipartite network to the original one. This is
what we do in Figure 4.
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Figure 4: Original clique size distribution for Actors, Cooccurrence and
Coauthoring, and extracted clique sizes distribution with the decomposition
scheme.

The obtained distributions display some differences for the three graphs
decomposed. First, the decomposition scheme produces no cliques of size
1 since the smallest extracted element is the edge (a 2-clique). Moreover,
many 2-cliques have not been found, which means that these 2-cliques are not
maximal in the original graph. For cliques of size more than 2, our extraction
algorithm has been able to find most cliques, or even more. Such new large
cliques are induced by the overlapping of other cliques. Notice that in the
case of Cooccurrence there are many new very large cliques which have been
created by overlapping, while in Actors and Coauthoring this phenomena
is very weak. Despite these differences, the obtained size distributions are
similar to the original ones. In particular, we obtain a nontrivial number of
large cliques and a similar number of cliques, which are the two main points
here.
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Practical computation

Notice that minimizing the number of cliques leads to the minimal clique cov-
ering problem which is known to be NP-complete [47, 57]. Computing maxi-
mal cliques of a graph is also NP-complete [1, 13] and so is the computation
of the largest clique containing a given edge {u, v}. However, some heuristics
make it possible to compute it if the graph is not too large. In our case, we
use the following remarks. Let us denote the sets of neighbors of a vertex and
an edge by N(u) = {v ∈ V |{u, v} ∈ E} and N(u, v) = N(u) ∩ N(v) respec-
tively. First notice that a largest clique containing {u, v} in G is also a largest
clique containing {u, v} in the sub-graph of G induced by N(u, v) ∪ {u, v}.
Moreover, if we denote by C the largest clique in the sub-graph of G induced
by N(u, v), then C∪{u, v} is the clique we are looking for. Figure 5 illustrates
this process.

u v u v

a b c d e b c d
b c d

Figure 5: Given a graph G = (V,E ′), we are looking for a largest clique
containing the edge {u, v}. This clique is necessarily contained in the
subgraph induced by N(u) ∪ N(v) ∪ {u, v} = {b, c, d, u, v}. It is actu-
ally sufficient to compute the largest clique C in the subgraph induced by
N(u) ∩ N(v) = N(u, v) = {b, c, d} since the clique we are looking for is
nothing but C ∪ {u, v} which, in our case, gives {u, v, b, c}

Recall that the decomposition process relies on a NP-complete problem in
general. However, we observed that in real-world complex networks, the sub-
graphs induced by N(u, v) for all edges {u, v} are in general very dense and
very small (Figure 6), which is due to the high clustering and to the power
law degree distribution, respectively. This makes it possible to compute the
largest clique containing {u, v} very efficiently in practice.

Properties of the bipartite graphs

Given the general decomposition scheme, we can now transform any com-
plex network into a bipartite graph. Figure 7 shows the top and bottom de-
gree distribution for the natural bipartite networks Actors, Cooccurrence and
Coauthoring, and the ones obtained for Internet, Web and Proteins graphs
using our decomposition scheme.
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Figure 6: Distribution of the N(u, v) sizes for all edges (u, v), and average
density of neighborhoods of given size.
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Figure 7: Top and bottom degree distributions for the natural bipartite ver-
sions of Actors, Cooccurrence, and Coauthoring, and for the bipartite version
of Internet, Web, and Proteins obtained with the decomposition scheme.

All these distributions have a property in common: bottom degree distri-
butions fit very well power laws in all cases. On the contrary, the top degree
distributions are of two kinds: while Cooccurrence, Coauthoring, Internet
and Proteins ones exhibit a Poisson behavior, Actors and Web ones are more
heavy tailed.

These results lead to several remarks. First, the power law bottom de-
gree distribution seems universal, just like the power law distribution in the
classical versions of these graphs. Second, the top degree distributions can
be qualitatively different and this point is important in the use of the bipar-
tite structure for modeling complex networks since it can impact on some
characteristics of the generated graphs. Further remarks will be pointed out
in Section 6.
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One may also wonder if the degree of a bottom vertex in the bipartite
graph and the classical version of the same graph are related. Notice first
that the degree of a vertex in the classical graph is the sum of the degrees
of the top vertices to which it is connected in the bipartite graph, minus the
number of vertices in common in the neighborhood of these vertices. One
can easily be convinced that this overlap between neighborhoods, if any, can
have a great impact on the degree distribution. To deepen this notion of
overlap, one can observe the correlation between the bottom vertex degrees
in both bipartite and classical version of the same graph (Figure 8). There
exists nontrivial correlations in both cases, which are particularily strong in
the case of Cooccurrence. Others remarks on the overlap will be discussed
further in Section 6.
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Figure 8: Correlations between degrees in the classical network and the bi-
partite one. From left to right: Actors, Coauthoring, and Cooccurrence.

Finally, we have shown in this section that all complex networks have a
nontrivial underlying bipartite structure, which can be computed using our
decomposition scheme. This leads us to the following question: is it possible
to see the main properties of real-world complex networks as consequences
of their underlying bipartite structure? We answer this question in the next
sections.

3 The bipartite models.

Our aim is now to use the new general property of real-world complex net-
works discovered in the previous section, namely their underlying bipartite
structure, as a way to propose a model which captures the main wanted
properties.

As discussed in the first section of this paper, there are basically two ways
to achieve this goal. First, we may try to sample random bipartite graphs
with prescribed (top and bottom) degree distributions. Second, we may try
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to propose a construction process similar to the ones observed in practice, to
obtain a growing model.

We proposed such models in [34]. In order to deepen the understanding
of these models, we here recall and discuss more precisely their definitions,
and we provide a full (both analytic and experimental) analysis in the next
sections.

Random sampling of bipartite graphs with prescribed

degree distribution

One can sample uniformly a random bipartite graph with prescribed (top
and bottom) degree distributions as follows (see Figure 9) [17, 55, 56]:

1. generate both top and bottom vertices and assign to each vertex a
degree drawn from the given distributions,

2. create for each vertex as many connection points as its degree,

3. link top and bottom connection points randomly,

Figure 9: Construction of a random bipartite graph with prescribed degree
distributions: first top and bottom vertices are drawn and each vertex is
assigned a degree with respect to the given distributions, then edges are
chosen randomly between the two sets.

This process generates random bipartite graphs uniformly within the set
of bipartite graphs with the given degree distributions. However it cannot
be used without taking care of the following constraints: top and bottom
distributions cannot be arbitrary since they must allow the total degree of
both sets to be equal. Actually one only has to ensure that the number of
vertices times the mean of the distribution brings the same value for top and
bottom sets. The second problem arises with the fact that even if the two
distributions are theoretically consistent, two sets of degrees experimentally
drawn from these distributions can be inconsistent (the sums of the degrees
are different). A classical trick, which induces no bias, consists in dropping
one top and one bottom vertex at random and redraw their degree [55, 56].
This last step may have to be done more than once before one obtains correct
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values but finally the implementation and use of the model is very simple
and efficient [17].

Note that, just like with the MR model, multiple edges may appear.
Again, one can easily show that they can be neglected when the graph is
large. Moreover, some approaches exist [38, 44] which can easily be modified
to obtain random bipartite graphs without multiples edges. This is however
out of the scope of this paper.

Growing bipartite model with preferential attachment

The random bipartite model assumes that two distributions, for both top
and bottom degrees, are explicitly given. One can also use other rules (pref-
erential attachment for instance) to define them implicitly and introduce a
growing model. Indeed, as already noticed, the bottom degree distributions
follow a power law. This leads to the following model: at each step, a new
top vertex is added and its degree d is sampled from a prescribed (top) dis-
tribution (which qualitatively varies between graphs). Then, for each of the
d edges of the new vertex, either a new bottom vertex is added (with prob-
ability 1− λ) or one is picked among the preexisting ones using preferential
attachment (with probability λ). The parameter λ is the overlap ratio, de-
fined as the average ratio of preexisting bottom vertices to which a new top
vertex is connected.

It is generally not possible to know exactly the order in which cliques are
created on real-world bipartite graphs, but the average ratio can be computed
globally as λ = 1 − |⊥|P

d>
. One can compute it and get 0.733 for Actors,

0.877 for Coauthoring and 0.949 for Cooccurrence. Notice that 1− λ can be
rewritten and is simply the inverse average bottom degree (since

∑
d> =∑

d⊥), therefore a high overlap ratio yields a high average bottom degree
(since only few nodes are created at each time step).

At each step of the construction process, the bipartite graph has the
required degree distributions: the prescribed top degree distribution is ob-
tained by construction while the power law degree distribution is obtained
using preferential attachment, which can be shown formally in exactly the
same way as in the original AB model [3]. Notice moreover that this con-
struction process is very similar to the one observed in some real-world cases.
For instance, Actors is built exactly this way: when a new movie is produced
(which corresponds to the addition of a top vertex), it is linked to actors
according to their popularity, and to some new actors, playing in a movie for
the first time.
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Bipartite models and classical graphs

Both models can be defined in the classical (in opposition to bipartite) frame-
work in a very similar way (we consider here a graph which can be viewed as
the ⊥-projection of an underlying bipartite graph). Starting with n discon-
nected vertices, one then iterates the following operation: add all the edges
between k vertices, where k is drawn from a given distribution (corresponding
to the top degree distribution of the underlying bipartite graph) and where
the vertices are chosen with respect to a specific rule (uniformly or using
preferential attachment according to their current degree, for instance). See
Figure 10. When the vertices are chosen uniformly at random, this model
is equivalent to the bipartite one where the bottom distribution is a Poisson
law. Notice that if k is always taken equal to 2, then only single edges are
added and so if the vertices are chosen uniformly at random we obtain the
classical random graph model [29, 12].
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Figure 10: Unipartite version of the model: nodes are initially disconnected
and at each step a clique is added on a randomly chosen set of bottom nodes.

A growing model can also be defined in which new vertices are created
and cliques are added by choosing a certain amount of pre-existing vertices
and some new ones (the cast of a new movie contains some known actors
and some new ones). This growing model can also include the preferential
attachment rule to choose old vertices. One then obtains the AB model as a
special case.

We finally have two models to produce bipartite networks similar to the
ones obtained from real-world complex networks, in terms of top and bottom
degree distributions. The next question is to ask if they capture the other
properties of interest in their ⊥-projection, namely the average distance, the
degree distribution and the clustering. We will answer positively to this
question with formal arguments and with experimental results in the next
sections.
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4 Analysis of the models.

Our aim in this section is to give formal proofs for the main properties of
the ⊥-projection of a random bipartite graph with prescribed degree distribu-
tions. Some of these properties, and others, have been studied independently
in [55, 56] with different techniques and a different point of view. We how-
ever believe that our proofs give new insight on these properties, therefore
we give them below. In particular, our proof techniques may be considered
as more mathematically rigorous.

Since these properties are induced by a typical graph (this is what ran-
dom sampling gives us), this is a way to answer the following question: what
properties are induced by the underlying bipartite structure? In particu-
lar, can we see the main properties of real-world complex networks, namely
low average distance, power law degree distribution and high clustering, as
consequences of the underlying bipartite structure?

We will see that it is indeed the case. Notice that many other properties,
like the size distribution of the connected components for instance, are of
high interest. It is shown in [55] that under reasonable conditions on the
degree distributions the ⊥-projection is connected, or at least has a giant
component. In all the practical cases, these conditions are fulfilled, therefore
we will restrict ourselves to this case.

Degree distribution

Let us first consider the degree distribution of the ⊥-projection of a random
bipartite graph G = (>,⊥, E). Given a bottom vertex u, we denote by
d(u) the degree of u in the bipartite graph, and by dU(u) its degree in its
⊥-projection. We want to study the distribution of dU(u) (we actually deal
here with the expected value for a randomly chosen u).

Lemma 1 Let us consider a bottom vertex u ∈ ⊥. The expected number of
bottom vertices which have a neighbor (in >) in common with u, i.e. dU(u),
is:

d(u)

|>| ·
∑

t6=u
d(t) +O

(
d(u)2

|>|2 ·
∑

t6=u
d(t)2

)

Proof. The exact expected value of dU(u) is given by:

dU(u) =
∑

t6=u

(
1−

(|>|−d(u)
d(t)

)
( |>|
d(t)

)
)
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since the probability that a given bottom vertex t has a top neighbor in
common with u depends only on the degree of both vertices and the num-
ber of top vertices. To simplify this formula, we can approximate the ratio(|>|−d(u)

d(t)

)
/
( |>|
d(t)

)
as follows:

(|>|−d(u)
d(t)

)
( |>|
d(t)

) =
(|>| − d(u))!(|>| − d(t))!

|>|!(|>| − d(u)− d(t))!

∼ (|>| − d(t))d(u)

|>|d(u)

∼ 1− d(t)d(u)

|>| +O
((

d(t)d(u)

|>|

)2
)

Therefore:

d>(u) ∼
∑

t6=u

(
d(t)d(u)

|>| +O
((

d(t)d(u)

|>|

)2
))

∼ d(u)

|>|
∑

t6=u
d(t) +O

(
d(u)2

|>|2
∑

t6=u
d(t)2

)

which is the formula of the claim. �

This lemma makes it possible to compute the probability for a vertex
u in the ⊥-projection graph to have a given degree k if the bottom degree
distribution is a power law with exponent β:

P [dU(u) = k] ∼ P [d(u) =
n∑

t6=u d(t)
· k]

∼ 1

(
∑

t6=u d(t)) · k)β
∼ k−β

Therefore, as long as the bottom degree distribution follows a power law,
the degree distribution in the ⊥-projection of the graph also follows a power
law with the same exponent, which is indeed the case in practice as one can
check in Figures 11 and 7.
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Average distance

To study the average distance in the ⊥-projection of a graph obtained with
the model, we will use a result from L. Lu about the diameter (i.e. the largest
distance between any two vertices) of some specific random graphs:

Theorem 1 [39] Let G = (V,E) be a graph whose vertices are weighted
with weights w1, · · · , wn, such that each edge {i, j} appears with probability
wi · wj · p. If the degrees of the vertices in V follow a power law with an
exponent β strictly greater than 2, then the diameter of the graph G is almost
surely Θ(log(n))6.

This theorem, together with the one presented above on the degree dis-
tribution of the ⊥-projection of the graph, leads to the following result:

Theorem 2 Let G = (>,⊥, E) be a bipartite graph such that the bottom
degree distribution follows a power law with an exponent greater than 2. Then
the diameter of the ⊥-projection of G is almost surely Θ(log(|⊥|)).

Proof. Given two bottom vertices u and v in⊥, the probability that they are
connected in the ⊥-projection is equal to the probability that they are both
linked to a same top vertex in G. This probability is exactly proportional to
d⊥(u) ·d⊥(v). Therefore we can apply Theorem 1 considering that the weight
of each vertex is its degree and so the connection probability is ensured, and
as long as bottom degree distribution follows a power law with an exponent
β strictly greater than 2. The diameter of the ⊥-projection of the graph
therefore is almost surely Θ(log(|⊥|)). �

Since the diameter is an upper bound for the average distance, this the-
orem implies that the average distance of the ⊥-projection scales at most as
fast as the logarithm of its number of nodes. Notice that, as in the case of
random networks [12, 18, 21, 28, 39, 55, 56], the average distance may grow
even slower.

Clustering

Recall that the clustering of a vertex v of degree at least 2 in a graph is the
probability that two of its neighbors are linked [64], i.e. the number of trian-
gles to which v belongs over the number of connected triples centered on it:
c(v) = |4(v)|

|∧(v)| . Then the clustering of the graph is defined as: 1
N

∑
v,d(v)>1 c(v).

6One denotes by f = Θ(g) the fact that f = O(g) and g = O(f)i.
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We define the clustering of a vertex restricted to a part of its neighborhood
as its clustering in the subgraph induced by this part of its neighborhood.

Hereafter we give a lower bound for the clustering of a graph G′ which
is the ⊥-projection of a bipartite graph G = (>,⊥, E) obtained using the
random bipartite model. We show that, under reasonable assumptions on the
top and bottom degree distributions, it is bounded by a value independent
of the size of the graph. This shows that the model produces graphs with
nontrivial clustering.

Before entering in the core of this section, notice that an approximation
formula for the clustering of such a graph is given in [55, 56]. Here we give
an exact formula for a lower bound. Both are interesting since the first one
gives an expected value which is indeed very close to the real value, while the
second one gives a guaranty that the exact value is above the given quantity.
We used this approach because we seek qualitative results only, and so it is
sufficient for us to show that the clustering does not tend to 0 when the size
of the graph grows. The lower bound achieves this goal.

First notice that the probability for two top vertices to have more than
just one bottom vertex in common in their neighborhood tends to zero when
the size of the graph grows. We therefore consider any vertex b in the ⊥-
projection of the graph and we suppose that its neighborhood is composed
of a set of disjoint cliques. We will prove the following:

• the effect of the number of top vertices of degree 2 to which b is con-
nected on its clustering is negligible, and

• the clustering of b can be bounded by a value which depends only on
its degree.

Lemma 2 Let >>2 denote the set of top neighbors of b in G with degree
strictly greater than 2, and ⊥>2 denote the set of bottom neighbors of >>2.
Let p be the fraction of neighbors of b which belong to ⊥>2, and α be the
clustering of b (in G′) restricted to ⊥>2.

Then the clustering of b in G′ scales as p2 · α.

Proof. The fact that the clustering of b restricted to ⊥>2 is α implies that
|4⊥>2(b)| = α ·

(
p·d
2

)
. If we consider the whole neighborhood of b, instead

of just ⊥>2, the number of triangles does not change while the number of
connected triples increases:
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c(b) =
α ·
(
p·d
2

)
(
d
2

)

= α · p · d((p · d− 1)

d(d− 1)

∼ p2 · α

which is the formula of the claim. �

Therefore, as long as p is a constant, one can neglect the top vertices of
degree 2 when computing the clustering of a given vertex. Now let us prove
that the clustering of a bottom vertex can be related to its degree.

Lemma 3 If b is connected only to top vertices of degree at least 3 in G,
then:

c(b) ≥ 1

2 · d(b)− 1

Proof. Suppose b is connected to two top vertices, t1 and t2, of degree at
least 3 (we deal with the general case below). Then the clustering of b is:

c(b) =

(
d(t1)−1

2

)
+
(
d(t2)−1

2

)
(
d(t1)+d(t2)−2

2

)

Suppose now that b is connected to t2 and t′1 such that d(t′1) = d(t1) + 1,
then the clustering of b is:

c′(b) =

(
d(t1)+1−1

2

)
+
(
d(t2)−1

2

)
(
d(t1)+d(t2)−1

2

)

and:

c′(b)− c(b) =
2 · (d(t2)− 1)

(d(t1) + d(t2)− 2) · (d(t1) + d(t2)− 3)

> 0

which means that the clustering grows with the degree of t1 and t2. A lower
bound for the clustering of b can therefore be obtained when both t1 and t2
have the smallest possible degree, 3.

This can be extended to the case where b has more than two top neighbors
to obtain the following lower bound:
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c(b) =

∑
ti

(
d(ti)−1

2

)
(P

ti
(d(ti)−1)

2

)

≥
∑

ti

(
3−1

2

)
(P

ti
(3−1)

2

) ≥ 1

2 · d(b)− 1

which is the formula of the claim. �

The clustering of the classical graph G′ can now be easily approximated:

c(G′) ∼ 1

N

∑

b∈⊥

1

2d(b)− 1

As long as there is a linear number c · N of vertices b of degree 2, the
sum scales linearly with N :

∑
b∈⊥

1
2·d(b)−1

≥∑b,d(b)=2

(
1

2·2−1

)
= c·N

3
(we could

have considered vertices of any constant degree k instead of 2). Therefore the
lower bound for the clustering is independent of N . This holds in particular
for power law networks since the number of vertices of degree 2 is of the order
of N · 2−α.

Since we do not consider top vertices of degree 2 in the last formula (due
to Lemma 2), we must also ensure that the number of such top neighbors
represent at most a constant fraction (not tending to 1) of the neighbors.
This is indeed the case for most distributions and in particular for the ones
met in practice. We finally obtain that the clustering of the graph is larger
than a non-zero constant independently of the size of the graph, which was
our aim.

5 Experimental results

The formal results of the previous section give a precise intuition on how the
random bipartite graph model with prescribed degree distributions behaves.
We can also check its properties experimentally by generating graphs using
this model and the same parameters as the ones measured on real-world
complex networks. This is what we do in this section with our six examples,
for the purely random bipartite model as well as for the one with preferential
attachment.

Table 4 and 5 give the values obtained for the average distance and the
clustering. Figure 11 shows a comparison between the degree distributions
of the original graphs, and the ones obtained with the two bipartite models.
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Internet Web Actors Co-auth Co-occur Protein

d 5.80 7 3.6 7.18 2.13 6.74

dER 5.25 5.47 2.97 7.57 2.06 10.4

dMR 3.25 4.48 2.95 5.77 2.36 5.73

dAB 4.15 5.1 2.93 5.5 2.38 8.15

dWS 5.90 11.23 2559 (*) 2269 (*) 55.6 (*) 509 (*)

drb 2.97 3.2 3.06 5.07 2.06 5.8

dgb 2.81 3.53 2.83 3.98 2.6 5.45

Table 4: Average distance of the commonly used models and the bipartite models.
For each network, we give its actual average distance, and the one obtained with
the purely random model dER, the random model with prescribed degree distri-
bution dMR, the AB model dAB , the WS model dWS , the random bipartite model
with prescribed degree distributions drb, and the growing one with preferential
attachment dgb. In the cases pointed by a star (*), the distance is not relevant due
to the high clustering.

Internet Web Actors Co-auth Co-occur Protein

c 0.171 0.466 0.785 0.638 0.822 0.153

cER 0.0001 0.00002 0.0002 0.0002 0.009 0.001

cMR 0.0694 0.017 0.0057 0.001 0.26 0.007

cAB 0.0024 0.0005 0.0015 0.003 0.028 0

cWS 0.171 0.461 0.74 (*) 0.523 (*) 0.74 (*) 0.06 (*)

crb 0.32 0.663 0.767 0.542 0.831 0.187

cgb 0.65 0.708 0.793 0.632 0.768 0.244

Table 5: Clustering obtained with the commonly used models and the bipartite
models. For each network, we give its actual clustering and the clustering obtained
with the ER model cER, the MR model cMR, the AB model cAB , the WS model
cWS , and also the random bipartite model with prescribed degree distributions
crb, and the growing one with preferential attachment cgb. Recall that in the cases
pointed by a star (*), the real clustering is too large to be obtained with the WS
model. Therefore we used in these cases the parameters inducing the maximal
clustering.

As expected from the previous section, the graphs we obtain with the
random bipartite model have a power law distribution of degrees, a small
average distance and a high clustering. Moreover, by definition, they have
the same distribution of cliques size as the original network. Therefore the
model is qualitatively accurate for the modeling of general real-world complex
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Figure 11: The original degree distribution of our six examples, together with
the ones obtained with the random bipartite model and with the growing
bipartite model.

networks: the simulations fit real-world values qualitatively well for both
clustering and average distance, which proves the relevance of the underlying
bipartite structure as an essential property to characterize real-world complex
networks.

There are however differences between the values obtained from the bipar-
tite models and real-world networks. They are consequences of the following
fact: in the original bipartite networks (both natural ones and the ones ob-
tained from the decomposition), many top nodes have a large neighborhood
intersection. In other words, the overlap between cliques is large (if two
cliques have one neighbor in common, they certainly have many). This be-
havior can be viewed as a bipartite clustering and is not captured by the
bipartite models. The random linking implies that most cliques have only
one vertex in common, if any. This is responsible for both the inaccuracy
of the models concerning some clusterings and for the irregularities one can
observe on some distributions. Figure 12 plots the distribution of the overlap
between cliques. This overlap is very small for all random bipartite graphs
while it is non trivial for the original graphs.

More precisely, in the case of Internet, we noticed the presence of a sub-
graph of only 94 vertices which contains all the 494 cliques of size 14 and more.
This makes this sub-graph very dense, which implies that the clustering of
each of the 94 nodes is very high. However, they have almost no impact
on the clustering of the whole graph (due to the average). On the other
hand, in the ⊥-projection of random bipartite networks, these large cliques
are disseminated all over the graph which brings two artifacts: there are a
lot of vertices having a degree between 14 and 29 which explains the bump
on degree distribution (a similar phenomenon can be observed on Web), and
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Figure 12: Distribution of the size of the overlap between cliques (i.e. inter-
sections of neighbors of top nodes) for both original networks (or decomposed
ones) and random bipartite ones.

the number of vertices with high clustering is drastically increased because
of their presence in large cliques (from 94 to 50, 000).

These experimental results should also be compared to the ones obtained
with the currently most used models, presented in Section 1. This comparison
gives evidence for the fact that the models we propose may be considered as
an important step towards the realistic modeling of complex networks.

All these remarks hold both for the growing bipartite model and for the
random one. This is worth to notice, since it may be very important in some
contexts that the model produces growing graphs with realistic properties,
and in other contexts that the obtained graphs are representative of a precise
class of graphs.

6 Conclusion and discussion

In this paper, we propose bipartite graphs as a general tool for the modeling of
real-world complex networks. They make it possible to achieve the following
challenges:

• the obtained networks have the three main wanted properties (loga-
rithmic average distance, high clustering and power law degree distri-
bution),

• the models are based on a realistic construction process representative
of what happens in some real-world cases, and
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• their definitions are simple enough to make it possible to give some
intuition and some proofs of their properties.

Moreover, they can be derived in two versions: one which relies on random
sampling among a class of graphs, and one which relies on an iterative con-
struction process. This makes them suitable for a wide variety of usages.

Whereas many models have already been introduced, this one is the first
which reaches all these goals at the same time. In this sense, it may be
considered as a significant step towards the realistic modeling of complex
networks. Moreover, it is very simple to obtain graphs using this model (we
provide a generator at [17]), which makes it highly suitable for simulation
purposes.

The model is based on the discovery that all real-world complex networks
have an underlying bipartite structure which can be seen as responsible for
their main properties. Some networks naturally have this structure. For the
others, we show that they can be decomposed into cliques which make such a
structure emerge. This shows that the main properties of complex networks
can be viewed as consequences of this bipartite structure, and that the model
captures a general behavior of complex systems.

However, as already stressed in previous sections, the overlapping be-
tween cliques is not taken into account by the bipartite model which in some
way distributes cliques all over the networks independently of the nodes im-
plied. On the contrary, it seems obvious that graphs such as Actors are not
randomly constructed: actors from a same country are more likely to play
together, for instance. This lack of overlapping can also be described on the
bipartite graphs: if two top nodes have more than one bottom node in the
intersection of their neighborhood, then this yields a non trivial bipartite
clique. On the other hand, for the graphs generated with both bipartite
models, most such bipartite cliques are trivial ones (as long as there are no
too many cliques).

An analogy can be made with the clustering in random graphs (ER graphs
for instance), in which neighborhoods of vertices are very sparse while real-
world neighborhoods are quite dense: one could say that real-world bipartite
networks are bi-clusterized while random ones are not, even if they capture
the most common properties.

There are many directions in which this work may be extended. Solving
the previous drawback is one of them. This model might also be extended
to the case of directed and weighted graphs. These problems rely on giving
a new definition to the concept of clique which can be used in this context.

Another similar problem occurs when the graph is only partially known.
In this case, some edges are missing, which might yield to only trivial cliques.
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A solution to this problem could be to study a model with quasi-cliques,
that is cliques with some missing links/nodes. Embedding this concept in
the bipartite vision however is nontrivial and remains to be done.

One may also use this model to deepen the study of some phenomena
of high interest like the robustness of networks, the spread of rumors and
diseases, etc. The random graph model with prescribed degree distribution
already led to important advances on these questions [19, 20, 52, 58]. They
should now be extended to the bipartite models in order to evaluate the
impact of clustering on these problems. We argue that this is a strength of
our approach since results on random graphs with prescribed degrees can be
directly adapted to our model in order to take the clustering into account.

Finally, let us emphasize on the fact that the study of real-world complex
networks is only at its beginning. The discovery of their statistical properties,
the analysis of the impact of these properties, their integration into accurate
models, and the use of these models in simulation and analysis are key is-
sues for our understanding of real-world complex networks, which has crucial
fundamental and applicative implications. Our work lies in this context. It
proposes a solution to the problem of the realistic random modeling of real-
world complex networks (in the sense of the three main observed properties),
and it points out some relevant directions for further research.
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