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Abstract: Temporal networks are graphs in which edges have temporal labels, specifying their
starting times and their traversal times. Several notions of distances between two nodes in a temporal
network can be analyzed, by referring, for example, to the earliest arrival time or to the latest starting
time of a temporal path connecting the two nodes. In this paper we mostly refer to the notion of
temporal reachability by using the earliest arrival time. In particular, we first show how the sketch
approach, which has been already used in the case of classical graphs, can be applied to the case of
temporal networks in order to approximately compute the sizes of the temporal cones of a temporal
network. By making use of this approach, we subsequently show how we can approximate the
temporal neighborhood function (that is, the number of pairs of nodes reachable from one another in
a given time interval) of large temporal networks in a few seconds. Finally, we apply our algorithm
in order to analyze and compare the behavior of 25 public transportation temporal networks. Our
results can be easily adapted to the case in which we want to refer to the notion of distance based on
the latest starting time.

Keywords: temporal network, link stream, temporal path, earliest arrival time, temporal reachability,
neighborhood function, public transportation system

1. Introduction

Temporal networks are graphs in which nodes and edges can appear or disappear over time, due
not only to failures or malfunctioning of the entities participating to the system represented by the
temporal graph, but mostly to the “normal” behaviour of the system itself. A typical temporal network
is a person-to-person communication network within a company. In such a network, for example,
nodes can appear or disappear (depending on the recruitment policy of the company), and edges
appear whenever an employee of the company sends an e-mail message to another employee of the
company. In this paper, we will focus on temporal networks in which the set of nodes does not change
over time (at least over a specified interval of time). Moreover, we consider only the case in which
edges are available at discrete time instants, so that the dynamics of the network is specified only by
the appearance times of the edges.

As observed in [1], temporal networks can model a great variety of systems in nature,
society and technology. Several different types of temporal networks have, indeed, been analyzed:
person-to-person communication networks (such as e-mails or phone calls), one-to-many information
spreading networks (such as Twitter interactions), contact networks (such as cell phone proximity
detections), biological networks (such as protein interactions), distributed computing networks (such
as autonomous system communications), infrastructure networks (such as public transport timetables),
and many others. It is worth observing, however, that different names have been used for denoting
temporal networks (even though the basic notion was almost the same), such as, for example, dynamic
networks [2], time-varying graphs [3], evolving networks [4], and link streams [5].
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Figure 1. An example of temporal graph with 5 nodes and 5 temporal edges (left), and the
corresponding “non-temporal” graph in which edge temporal labels have been removed (right).

In this paper we are interested in studying reachability properties of temporal networks. As
already observed in [6], if we just remove all time information from the temporal graph (and collapse,
if necessary, multiple edges between any two vertices into a single edge), we clearly loose all the
temporal information of the graph. This loss can be critical to the understanding of the reachability
relationships between the nodes of the graph. For example, in the left part of Figure 1 a temporal
network with five nodes and five temporal edges is represented, while in the right part of the figure
the “non-temporal” version of the graph (in which all edge temporal labels have been removed) is
shown. It is easy to verify that the two simple paths from node 1 to node 2 in the non-temporal graph
do not exist in the temporal network (a temporal path is, intuitively, a path such that each edge in the
path appears later than the edges preceding it in the path). Indeed, the edge from node 3 to node 2
appears at time 1, hence it cannot be used within a path starting from node 1, since all this node’s
edges appear after that time. Moreover, the path of length 2 from node 1 to node 5 in the non-temporal
graph does not exist in the temporal graph since it is only possible to reach node 3 from node 1 in
one step at time 5, while the edge from node 3 to node 5 appears at time 4. In summary, removing
temporal information may let us conclude that two nodes (i.e. 1 and 2) are reachable, while they are
not, or that the length of the shortest path between two nodes (i.e. 1 and 5) is smaller than it really is.

For this reason, we are interested in developing algorithmic techniques which allow us to
efficiently compute aggregate information about temporal paths and time-distances between pairs
of nodes. In particular, we focus on the temporal neighborhood function (in short, TNF) of a temporal
network, which is the natural extension of the neighborhood function already widely analyzed in
the case of non-temporal graphs [7,8]. More precisely, given a time interval I = [tα, tω ], the temporal
neighborhood function returns the value |N (I)|, where N (I) denotes the set of pairs of nodes (u, v)
such that there exists a temporal path from u to v, which starts from u not earlier than tα, arrives in v no
later than tω, and it is such that each edge appears later than the edges preceding it.

By assuming that a temporal network is represented by the sequence of its temporal edges,
ordered in non-decreasing order with respect to their appearance times, the temporal neighborhood
function can be easily computed by making use of the following “scan-based” algorithm [9], which
allows us to compute the cardinality of the temporal cone of a node s, which is the set of nodes reachable
from s in the interval [tα, tω ].

1. Initialize t[s] = tα and t[v] = ∞ for all v 6= s.
2. For each (directed) edge e = (u, v, t):

(a) If t ≤ tω, t[u] < t, and t + 1 < t[v], then t[v] = t + 1.
(b) If t > tω then stop.

3. Return the number of elements of t different from ∞.

If m is the number of temporal edges, it is easy to verify that the complexity of the above algorithm
is O(m). In order to compute the temporal neighborhood function, we have to execute the above
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procedure starting from every node of the temporal network. We refer to this algorithm as ETNF (Exact
TNF). Hence, if n denotes the number of nodes, we can conclude that ETNF runs in time O(nm).

Unfortunately, this time complexity is not acceptable when dealing with real-world temporal
networks, where there are millions of nodes and billions of temporal edges. For this reason, in this
paper we propose a new algorithm called ATNF for approximating the temporal neighborhood function
of a temporal network.

1.1. Our results

In order to approximate the temporal neighborhood function, we first describe a simple dynamic
programming algorithm for computing the reverse temporal cone of a node s, which is the set of nodes
that can reach s in a specific interval [tα, tω ]. Note that, if we can compute the cardinalities of the reverse
temporal cones, then we can also compute the temporal neighborhood function. We then show how
the sketch approach, which has been already widely used in the case of non-temporal graphs [10–13],
can be applied to the case of temporal networks in order to approximately compute the cardinalities
of the reverse temporal cones of a temporal network. More specifically, the resulting approximation
algorithm, called ATNF (Approximated TNF), has relative error bounded by ε with high probability,
whenever the sketches have size k = Θ

(
log n

ε2

)
. The time complexity of the algorithm is O(km).

We then experimentally evaluate the quality of the approximation performed by ATNF by
comparing the approximate value of the temporal neighborhood function with the exact one (computed
by making use of the scan-based exact algorithm described in the previous section) on a data-set
containing several medium-size temporal networks. As a matter of fact (and as expected), the obtained
approximation is much better than the one guaranteed in theory, even when the size of the sketches is
significantly smaller than the required size. By making use of the approximation algorithm, we hence
show how we can accurately approximate, in a few minutes, the temporal neighborhood function (and,
hence, the distance distribution) of two large temporal networks: the IMDB collaboration network
(which is undirected) and the Twitter re-tweets network (which is directed). The first network contains
more than half a million nodes and more than three millions edges, while the second network contains
more than two millions nodes and more than sixteen millions edges.

Finally, we apply ATNF in order to analyze and compare the behavior of twenty-five public
transportation temporal networks [14]. In particular, we analyze the reachability properties of these
networks, by computing the values of the temporal neighborhood function in different intervals during
a day. As a matter of fact, we observe that there are cities which perform significantly better than
others with respect to these reachability properties, and that this result cannot always been deduced
by simply looking at the density of the temporal network. Moreover, we show that the quality of the
approximation is preserved even with small values of the sketch sizes: this allowed us to perform the
entire experimental evaluation for all the cities in less than one hour (while the exact algorithm would
have roughly required almost four days).

1.2. Related work

Algorithms for distance computation in temporal networks have been proposed in [6] and [15].
[16] uses a similar algorithm to [6] for computing spanning trees. [9] proposes a method for indexing
data and answer reachability and path queries in temporal networks. The problem of finding different
types of path (minimum traveling time, earliest arrival time, and minimum number of hops) in
temporal network has also been investigated in a distributed context [17].

A problem related to the one analyzed in this paper is computing distances in road networks,
where edges have a traversal time but are supposed to exist at all times. In this case, the focus is mainly
on pre-computing some information in order to be able to answer fastest path queries very quickly
(see, for example, [18,19]). [20] focuses on the impact of the passenger demand on the performance of
path finding algorithms.
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Figure 2. An example of temporal graph with 5 nodes and 12 temporal edges (labels on edges represent
appearing time), and the corresponding link stream representation (labels on the left represent nodes,
labels above represent time instants).

Concerning public transportation networks, many works have focused on the efficient design of
such networks, by considering, e.g., where to place hubs, see for instance [21,22], or on their robustness
or resilience, by studying how perturbations on specific nodes or links, or changes in demand, affect
the whole network, see for instance [23,24]. Other works have used connectivity notions to evaluate
the importance of nodes in transportation networks, see for instance [25] and references within.

1.3. Structure of the paper

In Section 2, we give all basic definitions and notations concerning temporal networks, paths,
cones and neighborhood functions. In Section 3, we describe the dynamic programming algorithm for
computing reverse temporal cones, and we show how the bottom-k sketch approach can be used in
order to approximate the cardinalities of these cones (and, hence, the temporal neighborhood function),
getting our approximation algorithm ATNF. In Section 4 we experimentally evaluate the quality of the
approximation of ATNF and its running time, comparing our results with the ones of ETNF. Moreover,
we use the algorithm itself to compute the temporal neighborhood functions of two large temporal
networks. Finally, in Section 5, we apply ATNF for comparing the reachability properties of twenty-five
public transportation networks.

2. Definitions and notations

The following definitions are mostly inspired by [3,5,9]. A temporal graph is a pair G = (V, E),
where V is the set of nodes and E is the set of temporal edges. A temporal edge e ∈ E is a triple (u, v, t),
where u, v ∈ V are the source and destination nodes of the edge, respectively, and t ∈ N is its appearing
time. When the temporal edges are bidirectional, then (u, v, t) can be also written as (v, u, t). The time
horizon T (G) of a temporal graph G is the union of all the appearing times of its temporal edges. For
instance, in the left part of Figure 2 a temporal graph with 5 nodes and 12 temporal edges is shown: its
time horizon is {1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12}. A different way of representing a temporal graph is the link
stream diagram shown in the right part of Figure 2, where the labels on the left of the diagram represent
the nodes of the graph while the labels above the diagram represent the different time instants. In this
paper, we will indeed assume that the edges are given to the algorithms one after the other (similarly
to the streaming model) in non-decreasing order with respect to the appearing time: this corresponds
to reading the edges in the link stream diagram from left-to right.

2.1. Temporal paths

A temporal path P in a temporal graph G = (V, E) from a node u ∈ V to a node v ∈ V is a
sequence of temporal edges e1 = (u1, v1, t1), e2 = (u2, v2, t2), . . . , ek = (uk, vk, tk) such that u = u1,
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Figure 3. The earliest arrival path from node 1 to node 3 in the temporal graph of Figure 2 in the time
interval [1, 12] (left) and in the time interval [2, 12] (right).

v = vk, and, for each i with 1 < i ≤ k, ui = vi−1 and ti ≥ ti−1 + 1. The length of a temporal
path is the number of temporal edges it contains. For example, referring to the temporal graph
of Figure 2, (1, 4, 1), (4, 2, 5), (2, 5, 11), (5, 3, 12) is a temporal path of length 4. On the contrary,
(1, 4, 1), (4, 2, 5), (2, 3, 2) is not a temporal path, since the appearing time of the second edge is larger
than the appearing time of the third edge. The starting time (respectively, ending time) of a temporal
path P, denoted by σ(P) (respectively, η(P)), is equal to the appearing time of the first (respectively,
last) edge in the path. For instance, if P = (1, 4, 1), (4, 2, 5), (2, 5, 11), (5, 3, 12), then σ(P) = 1 and
η(P) = 12. Given a time interval I = [tα, tω ] and two nodes u and v, we will denote by P(u, v, I) the
set of all temporal paths P from u to v such that tα ≤ σ(P) ≤ η(P) ≤ tω. Among all temporal paths
between two nodes in a given time interval, in this paper we will distinguish the ones which allows us
to arrive as early as possible.

Definition 1. Given a temporal graph G = (V, E), two nodes u and v in V, and a time interval I = [tα, tω ], a
path P ∈ P(u, v, I) is said to be an earliest arrival path if η(P) = min{η(P′) : P′ ∈ P(u, v, I)}.

For example, the left part of Figure 3 shows the earliest arrival path from node 1 to node 3 in
the time interval [1, 12] in the temporal graph of Figure 2: this path consists of the temporal edges
(1, 4, 1), (4, 5, 3), and (5, 3, 4), its starting time is 1, and its ending time is 4. The right part of the figure,
instead, shows an earliest arrival path from node 1 to node 3 in the time interval [2, 12]: it consists of
the temporal edges (1, 4, 6) and (4, 3, 9), its starting time is 6, and its ending time is 9 (note that another
earliest arrival path from node 1 to node 3 in the same interval is the one consisting of the temporal
edges (1, 5, 7), (5, 4, 8), and (4, 3, 9)).

2.2. Temporal reachability cones and neighborhood functions

Given a temporal graph G = (V, E), a node u ∈ V, and a time interval I = [tα, tω ], in this paper
we are interested in efficiently computing the number of pairs of nodes (u, v) such that v can be reached
from u in the interval I. To this aim, we give the following definition.

Definition 2. Given a temporal graph G = (V, E), a node u, and a time interval I = [tα, tω ], the temporal
reachability cone of u in the interval I is defined as C(u, I) = {u} ∪ {v ∈ V : P(u, v, I) 6= ∅}.

For example, by referring to the temporal graph of Figure 2, the left part of Figure 4 shows the
temporal reachability cone of node 1 in the interval [1, 5]: in this case, all nodes can be reached by
node 1. The right part of figure, instead, shows the temporal reachability cone of node 1 in the interval
[9, 12]: in this case, all nodes can be reached by node 1 apart from node 4. It is also easy to verify that
the temporal reachability cone of node 1 in the interval [2, 5] contains only node 1, since there are no
temporal edges leaving it in this time interval.
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Figure 4. Two temporal reachability cones of node 1: the first one (left) is in the interval [1, 5] and
includes all nodes, while the second one (right) is in the interval [9, 12] and includes all nodes but node
4.

Definition 3. Given a temporal graph G = (V, E) and a time interval I = [tα, tω ], the temporal
neighborhood function in the interval I is defined as |N (I)|, whereN (I) = {(u, v) ∈ V×V : v ∈ C(u, I)}.

For example, by referring to the temporal graph of Figure 2 and by choosing I = [1, 5], N (I)
contains the pairs (1, 1), (1, 2), (1, 3), (1, 4), and (1, 5), since all nodes belong to C(1, I). N (I) also
contains the pairs (2, 2), (2, 3), (2, 4), (2, 5) (since C(2, I) = {2, 3, 4, 5}), (3, 2), (3, 3), (3, 4), (3, 5) (since
C(3, I) = {2, 3, 4, 5}), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5) (since C(4, I) = {1, 2, 3, 4, 5}), (5, 2), (5, 3), (5, 4),
and (5, 5) (since C(5, I) = {2, 3, 4, 5}). Therefore the temporal neighborhood function in I is equal to
22.

3. Computing temporal neighborhood functions through reverse temporal cones

As we already said, in this paper we consider the left-to-right order for reading the stream of
temporal edges, which corresponds to reading the edges in non-decreasing order with respect to their
appearing times.

Definition 4. Given a temporal graph G = (V, E) and a time instant t ∈ T (G), the predecessor pred(t) of
t in G is the maximum time instant t′ ∈ T (G) such that t′ < t (if t′ does not exist, then we set pred(t) = ⊥).

For example, by referring to the temporal graph of Figure 2, pred(1) = ⊥, pred(9) = 8, and
pred(11) = 9.

Observe that, if I = [tα, tω ] and pred(tω) 6= ⊥, thenN (I)−N ([tα, pred(tω)]) contains exactly all
pairs of nodes (u, v) such that any earliest arrival path P from u to v satisfies η(P) = tω.

In order to compute the temporal neighborhood function of a temporal graph G in a given time
interval [tα, tω ], we first introduce the following definition.

Definition 5. Given a temporal graph G = (V, E), a node u, and a time interval I = [tα, tω ], the reverse
temporal cone of u in the interval I is defined asR(u, I) = {v ∈ V : P(v, u, I) 6= ∅}.

In other words, the reverse temporal cone of u in the interval I contains all nodes v that can reach
u in I (hence, if v ∈ R(u, I), then u ∈ C(v, I)). The advantage of referring to reverse temporal cones
is that these cones can be easily computed by using the following dynamic programming algorithm
(observe that, for any t ∈ T (G), C(u, [t, t]) is the neighborhood of u at time t, that is, the set of nodes v
such that (u, v, t) ∈ E).

Base case R(u, [tα, tα]) = {u} ∪ {v ∈ V : u ∈ C(v, [tα, tα])}.
Recursive step Let t ∈ T (G) with t > tα and suppose we have computedR(u, [tα, t′]) for every t′ < t

with t′ ∈ T (G). Then,R(u, [tα, t]) = R(u, [tα, pred(t)]) ∪⋃v:u∈C(v,[t,t])R(v, [tα, pred(t)]).
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The base case simply states that, if there is an edge (v, u, tα), then v belongs to the reverse temporal
cone of u in the interval [tα, tα]. The recursive step, instead, says that, if there is an edge (v, u, t), then
all nodes that could reach v before t can now also reach u at time t. For example, by referring to
the temporal graph of Figure 2 (in which all edges are bidirectional), the following table shows the
evolution of the reverse temporal conesR(u, [1, 6]) according to the above algorithm (until all nodes
are reachable from all other nodes).

(u, v, t) R(1, [1, 6]) R(2, [1, 6]) R(3, [1, 6]) R(4, [1, 6]) R(5, [1, 6])

(1, 4, 1) {1, 4} {2} {3} {1, 4} {5}
(2, 3, 2) {1, 4} {2, 3} {2, 3} {1, 4} {5}
(4, 5, 3) {1, 4} {2, 3} {2, 3} {1, 4, 5} {1, 4, 5}
(3, 5, 4) {1, 4} {2, 3} {1, 2, 3, 4, 5} {1, 4, 5} {1, 2, 3, 4, 5}
(2, 4, 5) {1, 4} {1, 2, 3, 4, 5} {1, 2, 3, 4, 5} {1, 2, 3, 4, 5} {1, 2, 3, 4, 5}
(1, 4, 6) {1, 2, 3, 4, 5} {1, 2, 3, 4, 5} {1, 2, 3, 4, 5} {1, 2, 3, 4, 5} {1, 2, 3, 4, 5}

Let us assume that the set of temporal edges of a temporal graph G = (V, E) is ordered in
non-decreasing order with respect to the appearing times, and that edges are not bidirectional. Let−→
E = (e−→

1
, e−→2 , . . . , e−→m ) be the resulting ordered set of temporal edges, so that the appearing time of

e−→
i

is not greater than the appearing time of e−→
i+1

, for any i with 1 ≤ i < m. We can then implement

the above dynamic programming algorithm by scanning the edges in
−→
E one after the other. For

each edge e−→
i

= (v, u, t), if t = tα, then we add v to R(u, [tα, tα]). Otherwise (that is, t > tα),
we set R(u, [tα, t]) equal to the union of R(u, [tα, t]) and R(v, [tα, pred(t)]), after having initialized
R(u, [tα, t]) toR(u, [tα, pred(t)]) the first time an edge appearing at time t is scanned. Since the size of
the intermediate reverse temporal cones can be linear in the number n of nodes in the graph, the time
complexity of this algorithm is O(nm). Moreover, if we want to maintain all the intermediate reverse
temporal cones, then the space complexity of the algorithm is O(n2m). However, if we just want to
compute the final reverse temporal cones, then the space complexity can be reduced to O(n2). Observe
that, if the edges are bidirectional, then we can easily modify this algorithm by simply considering
twice each edge (v, u, t): once as (v, u, t), and the other as (u, v, t).

Once we have computed the reverse temporal cones in a specific interval I, we can easily compute
N (I). Indeed, we have that, for each pair of nodes u and v, (u, v) belongs to N (I) if and only if
u ∈ R(v, I). This implies that

|N (I)| = ∑
u∈V
|R(u, I)| .

Hence, the temporal neighborhood function can be computed by using the sizes of the reverse temporal
cones.
Remark. Note that the above dynamic programming approach does not seem to be applicable to the
computation of temporal cones, as defined in the previous section. More precisely, it is not clear how
to rewrite the recursive step of the algorithm, when referring to temporal cones. Indeed, in general it
holds that

C(u, [tα, t]) 6= C(u, [tα, pred(t)]) ∪
⋃

v∈C(u,[t,t])

C(v, [tα, pred(t)]),

since, for each vertex v, C(v, [tα, pred(t)]) is the set of all the vertices reachable from v through temporal
paths which use edge appearing times smaller than t. Hence, C(u, [tα, t]) does not necessarily include
the nodes in C(v, [tα, pred(t)]), as the corresponding paths might turn out to be not valid from a
temporal point of view. Indeed, the edge from u to v appears at time t but the edges on the paths
from v to other vertices may have appearing times smaller than t. Let us consider, for example, the
temporal graph with the three nodes 1, 2, and 3, and the two temporal edges (1, 2, 1) and (2, 3, 2).
Clearly, C(2, [1, 1]) = {1, 2} and C(3, [1, 1]) = {3}. Hence, when the edge (2, 3, 2) is analyzed, we have
that

C(3, [1, 2]) = {2, 3} 6= {1, 2, 3} = C(3, [1, 1]) ∪ C(2, [1, 1]).
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3.1. Approximating the size of the reverse temporal cones

As we have already observed, the time complexity of the dynamic programming algorithm for
computing the reverse temporal cones is O(nm), where n = |V| and m = |E|. This complexity can
turn out to be prohibitive when dealing with temporal graphs with thousands of nodes and millions
of temporal edges. For this reason, in this section we propose ATNF, an algorithm for computing
an approximation of the size of the reverse temporal cones, which is based on the application of the
sketch techniques: these techniques allow us to represent the reverse temporal cone for each node u
in a compressed approximated form of (almost) constant size k (typically O(log(n))). By using cone
sketches in place of real cones, we will obtain a dynamic programming approximation algorithm
whose time complexity is O(km) time.

3.1.1. Sketch operations

Given a set A, a sketch S(A) is a compressed form of representation of A of size O(k), with k ∈ N,
providing the following operations.

INIT (S(A)) How a sketch S(A) for A is initialized.
UPDATE (S(A), u) How a sketch S(A) for A is modified when an element u is added to A.
UNION (S(A), S(B)) Given two sketches for A and B, provide a sketch for A ∪ B.
SIZE (S(A)) Estimate the number of distinct elements of A.

The following two requirements are needed for sketches: (i) given two sketches S(A) and S(B)
for any two sets A and B, S(A ∪ B) can be computed just by looking at S(A) and S(B), and (ii) the
order in which the elements are added and adding any element twice does not affect the sketch. We
assume that |A| > k > 1.

3.1.2. Bottom-k sketches

One of the most popular sketch techniques is the bottom-k technique, which works as follows.
Given a mapping r : U → {1/n, 2/n, . . . , n/n} and a subset A of U, we denote as Hk(A) the first k
elements of A according to r (or A itself if |A| < k). A bottom-k sketch for A is Hk(A).

INIT (S(A)): S(A) = ∅.
UPDATE (S(A), u): return Hk(S(A) ∪ {u}).
UNION (S(A), S(B)): return Hk(S(A) ∪ S(B)).
SIZE (S(A)): If |S(A)| < k return |S(A)|. Otherwise return k−1

maxu∈S(A) r(u) .

As an example, let U be the set of the 26 letters of the alphabet and let r : U → {1/26, 2/26, . . . , 26/26}
be the following function:

a b c d e f g h i j k l m n o p q r s t u v w x y z

r 10
26

22
26

2
26

24
26

25
26

12
26

6
26

7
26

11
26

17
26

13
26

15
26

14
26

19
26

5
26

9
26

21
26

8
26

18
26

26
26

16
26

1
26

20
26

4
26

23
26

3
26

Let A = {a, l, i, c, e}, B = {w, o, n, d, e, r, l, a}, and k = 3. Then S(A) is {a, i, c} and S(B) is {o, r, a}, as
these letters are the three elements of A and B, respectively, having minimum r-values. Hence,

S(A ∪ B) = UNION(S(A), S(B)) = H3(S(A) ∪ S(B)) = H3({a, i, c, o, r}) = {c, o, r}.

The size of A ∪ B = {a, l, i, c, e, w, o, n, d, r}, which is equal to 10, can then be estimated as follows:

SIZE(S(A ∪ B)) = SIZE({c, o, r}) = 2
maxu∈{c,o,r} r(u)

=
2

8/26
=

52
8

= 6.5.
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Undirected graphs Directed graphs
Name Nodes Edges Name Nodes Edges
TOPOLOGY 34 761 154 842 ENRON 150 24 705
ROLLERNET 63 403 834 COLLEGE 1 900 59 834

IMDB- WIKI-ELECTION 7 118 103 675
ADVENTURE 47 763 157 492 FACEBOOK-WALLPOST 46 952 876 993
HORROR 65 338 167 026 TWITTER 3 511 241 16 438 790
THRILLER 69 753 188 862
CRIME 62 050 216 741
ROMANCE 79 227 305 390
ACTION 72 260 338 815
COMEDY 162 303 666 568
DRAMA 279 059 1 342 886
ALL 527 535 3 152 994

Table 1. Number of nodes and edges of each (undirected or directed) graph.

It can be shown that the mean relative error of the sketch sizes with respect to the real sizes is
bounded by 0.79/

√
(k− 2) and that if we choose k ∈ Θ

(
log |U|

ε2

)
, the mean relative error is bounded

by ε with high probability [10,11].

3.1.3. Applying sketches to reverse temporal cones

In the case of reverse temporal cones, the sets whose sizes we want to approximate are the reverse
temporal cones at different time instants within a specific time interval I. Indeed, for each edge
scanned by the dynamic programming algorithm described in the previous section, either we use the
UPDATE operation in order to add a node to the sketch of a reverse temporal cone, or we use the UNION

operation in order to compute the union of the sketches of two reverse temporal cones. Whenever all
edges whose appearing time is in I have been read, we can use the SIZE operation in order to estimate,
for each node u, the size ofR(u, I). Let r(u, I) denote the obtained estimate of |R(u, I)|. Hence, ATNF

approximates |N (I)| by using the estimates r(u, I) as follows:

|N (I)| = ∑
u∈V

r(u, I).

By linearity of expectation, the approximation performed by ATNF is unbiased and has relative error
bounded by ε with high probability, whenever k ∈ Θ

(
log n

ε2

)
.

4. Experimental results

This section is devoted to analyze the performance of ATNF on approximating N (I). We evaluate
both the running time of ATNF and the quality of the approximation achieved, comparing our results
with the ones provided by ETNF. Summarizing, the two algorithms we are going to compare are the
following.

ATNF Our method for approximating the earliest arrival reverse temporal cones and hence N (I), as
described in Section 3.1. As the quality of the approximation of ATNF and its running time depend
on the value of k, we analyze the behaviour of ATNF varying k in the set {2, 4, 8, 16, 32, 64, 128}.

ETNF The method in [9] described in Section 1 to compute exactly the earliest arrival temporal cones
and hence N (I) for any I.

Implementation and Computing Platform

Our computing platform is a machine with Intel(R) Xeon(R) CPU E5-2620 v3 at 2.40GHz, 24
virtual cores, 128 Gb RAM, running Ubuntu Linux version 4.4.0-22-generic. The code has been written
in Java, using Java 1.8, for both the competitors.
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Dataset

In order to perform our experiments, we used the following temporal graphs (other temporal
networks will be considered in Section 5, in which we will perform a case study based on the directed
public transport networks of 25 cities).

• COLLEGE: Private messages sent on an online social network at the University of California,
Irvine. An edge (u, v, t) means that user u sent a private message to user v at time t [26,27].

• ENRON: Emails between Enron employees 1999 and 2003. An edge (u, v, t) means that user u
sent an email to user v at time t.

• FACEBOOK-WALLPOST: A small subset of posts to other user’s wall on Facebook. The nodes of
the network are Facebook users, and each directed temporal edge represents one post, linking
the users writing a post to the user whose wall the post is written on [28–30].

• IMDB: Every node corresponds to an actor and two actors are connected by their collaboration in
a movie, where the appearing time of an edge is the year of the movie. We will consider both the
whole temporal collaboration graph and the graphs induced by the following genres: adventure,
horror, thriller, crime, romance, action, comedy, drama (for each genre, we consider only the
edges corresponding to movies classified in that genre) [31].

• ROLLERNET: Opportunistic sighting of Bluetooth devices by groups of rollerbladers carrying Intel
iMotes during a roller tour. The 62 iMotes performed neighborhood scans every 15 second [32,33].

• TOPOLOGY: The nodes are autonomous systems and the edges are connections between
autonomous systems. The appearing time of an edge is the time-point of the corresponding
connection [29,30,34].

• TWITTER: Tweets about the migrant crisis of 2015 [35,36]. A directed edge (u, v, t) means that
user u retweeted a tweet of user v at time t.

• WIKI-ELECTION: The network of users from the English Wikipedia that voted for and against
each other in admin elections. Nodes represent individual users, and edges represent votes. Each
edge is annotated with the date of the vote [29,30,37].

The dimensions of the above temporal graphs are summarized in Table 1, where we report for each
graph its number of nodes and its number of edges, and whether the graph is directed or not. For
a given network G, let tα and tω denote the minimum and maximum appearing time, respectively,
of the temporal edges included in G. We have then considered different intervals I = [tα, tβ], for
increasing values of tβ with tβ ∈ T (G), where T (G) is the time horizon of G (that is, the union of all
the appearing times of its temporal edges). Both ETNF and ATNF compute (or approximate) the number
of pairs of nodes u and v such that, starting from u not before time tα, we can reach v within time tβ.
As a result, we get an exact cumulative frequency distribution running ETNF and its approximation
running ATNF. Section 4.1 is devoted to measure the quality of this approximation, while Section 4.2
shows the running times.

4.1. Quality of the Approximation

In order to evaluate the quality of the approximation, for each I = [tα, tβ] we have compared the
approximation |N (I)| provided by ATNF with respect to the exact value |N (I)| provided by ETNF,
using the RELATIVE ERROR. We have hence considered the MEAN RELATIVE ERROR (in short, MRE)
among all the intervals I = [tα, tβ] for all values of tβ in T (G). More formally, the MRE is defined as
follows:

MRE =
1

|T (G)| ∑
tβ∈T (G)

||N ([tα, tβ])| − |N ([tα, tβ])||
|N ([tα, tβ])|

.

For each k ∈ {2, 4, 8, 16, 32, 64, 128}, we have repeated the experiments ten times and we have
reported our results in Table 2. In this table, for each k, we have reported the average MRE, denoted as



11 of 20

GRAPH
MRE of ATNF

k = 2 k = 4 k = 8 k = 16 k = 32 k = 64 k = 128
µ σ µ σ µ σ µ σ µ σ µ σ µ σ

TOPOLOGY 0.288 0.185 0.145 0.124 0.075 0.076 0.096 0.075 0.066 0.041 0.050 0.044 0.034 0.028
ROLLERNET 0.444 0.647 0.192 0.235 0.110 0.112 0.055 0.049 0.017 0.019 0.000 0.000 0.000 0.000
ENRON 0.578 0.481 0.454 0.505 0.161 0.118 0.138 0.136 0.075 0.070 0.069 0.063 0.046 0.041
COLLEGE 0.531 0.406 0.450 0.537 0.199 0.138 0.118 0.098 0.108 0.076 0.043 0.033 0.028 0.025
WIKI-ELECTION 0.318 0.197 0.387 0.347 0.152 0.103 0.115 0.096 0.088 0.066 0.072 0.047 0.038 0.028
FACEBOOK-WALLPOST 0.430 0.348 0.370 0.251 0.213 0.156 0.168 0.110 0.064 0.059 0.067 0.045 0.058 0.041
IMDB-ADVENTURE 0.350 0.236 0.280 0.206 0.182 0.130 0.135 0.115 0.087 0.067 0.044 0.039 0.047 0.041
IMDB-HORROR 0.419 0.371 0.220 0.155 0.191 0.194 0.134 0.104 0.079 0.081 0.056 0.066 0.029 0.027
IMDB-THRILLER 0.472 0.703 0.239 0.377 0.144 0.182 0.094 0.105 0.064 0.070 0.044 0.046 0.020 0.027
IMDB-CRIME 0.461 0.402 0.256 0.230 0.247 0.267 0.121 0.101 0.108 0.104 0.070 0.056 0.035 0.027
IMDB-ROMANCE 0.546 0.496 0.395 0.387 0.131 0.103 0.122 0.093 0.081 0.079 0.089 0.077 0.043 0.034
IMDB-ACTION 0.420 0.345 0.275 0.197 0.184 0.143 0.136 0.097 0.085 0.063 0.064 0.054 0.043 0.034
IMDB-COMEDY 0.585 0.680 0.285 0.195 0.216 0.182 0.135 0.095 0.113 0.080 0.073 0.050 0.052 0.039
IMDB-DRAMA 0.776 1.335 0.250 0.175 0.185 0.136 0.144 0.134 0.099 0.079 0.072 0.057 0.042 0.030

Table 2. Comparing the quality of the approximation of ATNF with respect to ETNF for approximating
|N (I)|. For each k, the average µ and the standard deviation σ of the MRE over ten experiments are
reported.

µ, and the standard deviation, denoted as σ, over the ten experiments (note that both µ and σ are 0 for
the ROLLERNET network, whenever k ≥ 64, since the graph has less than 64 nodes and hence ATNF

turns out to always compute the exact values).
In general, both µ and σ consistently decrease while increasing k. For k = 2, 4, and 8, the average

MRE appears to be quite large: for k = 2, the MRE can be up to 50%, and for k = 8 the MRE can be
close to 20%. By increasing k to 16 we get an average MRE consistently smaller than 17%, which
further reduces with k = 32 and k = 64, where in both the cases the average MRE is very often below
8%. Finally, for k = 128, the average MRE appears to be always smaller than 5.3%. For the sake of
completeness, looking at the values of σ, we can observe how the variability of the experiments is
more controlled when k increases.

Note that, in the table, the IMDB-ALL and TWITTER networks are missing since, according to our
estimate and as shown in the next section, ETNF would have taken more than one week for the first and
more than 190 days for the second to complete. Hence, for these two graphs, no quality comparison
was possible.

4.2. Running Time and Time Comparison with respect to ETNF

Table 3 reports the average running time (in milliseconds) of ATNF and of ETNF, respectively, to
get the approximate and the exact value of |N (I)| for each I = [tα, tβ]. Increasing the value of k, the
running time of ATNF increases consistently (as also the quality of the approximation). In the case of
bigger graphs, the running time of ATNF is orders of magnitude smaller with respect to the one of
ETNF (rightmost column). We have highlighted this improvement in Table 4, where we have shown
the ratio between the running time of ATNF and the one of ETNF.

Concerning the smaller graphs, like ROLLERNET and ENRON, which have respectively 63 and 150
nodes, we have observed that ATNF turns to be exact if k is set to a value greater than this number of
nodes. In the case of ROLLERNET, it is interesting to note that the dynamic programming algorithm
(which, hence, is exact for k = 64 or 128) is strictly faster than the BFS approach implemented by ETNF.
On the other hand, as in the case of ENRON, the running time of ATNF, although not exact, can be
sometimes worse than the one of ETNF whenever the graph has few nodes.

In the general case, running ATNF with k = 128, and thus getting an average MRE below 5.3% (as
we have seen in the previous section), the running time of ATNF is very often below 0.3% the running
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GRAPH
Running Time of ATNF Running Time of

k = 2 k = 4 k = 8 k = 16 k = 32 k = 64 k = 128 ETNF

TOPOLOGY 2 419.4 2 428.7 2 547.8 2 937.4 4 700.3 9 892.4 31 295.7 1 715 090
ROLLERNET 498.9 740.8 1066.5 1759.2 4079.3 1040.3 956.2 7 636
ENRON 70.2 34.2 75.1 131.4 262.9 822.9 1 201.5 1 172
COLLEGE 93.5 120.9 170.7 312.5 992.9 3 010.1 9468.7 32 394
WIKI-ELECTION 142.1 178.3 329.9 611.8 1 478 4 763 16 811.1 202 519
FACEBOOK-WALLPOST 1 542.7 2 376.9 3 256.9 6 188.5 17 152.6 56 847.8 172 628.4 12 469 653
IMDB-ADVENTURE 232.9 307.2 348.4 472.2 967.8 2 428.8 6 925.5 2 125 739
IMDB-HORROR 393.6 424.7 417.4 468.1 730.5 1 352.1 3 239.2 3 039 487
IMDB-THRILLER 460.5 473.4 504.9 586.5 1 065.6 2 517.1 6 549.6 3 821 616
IMDB-CRIME 383.1 402.6 477.0 628.6 1 315.3 3 230.9 9 455.8 3 745 721
IMDB-ROMANCE 704.2 758.8 873.6 1 196.2 2 160.6 5 773.4 16 980.6 7 046 556
IMDB-ACTION 865.7 927.5 1 014.8 1 243.6 2 645.3 6 060.7 18 109.9 7 079 857
IMDB-COMEDY 2 825.3 3 033.0 3 057.8 4 075.4 7 131.3 15 709.5 4 2579.4 31 806 022
IMDB-DRAMA 9 619.7 9 923.5 11 022.8 13 050.7 19 975.2 38 993.5 101 945 113 236 400
IMDB-ALL 39 671.1 40 273.2 41 582.4 44 120.5 55 290.4 91 824.0 212 132.1 †622 185 999
TWITTER 31 892.7 40 758.1 61 724.0 135 468.9 424 497.6 1 325 115.7 4 222 861.0 †25 771 840 132

Table 3. Running times (milliseconds) of ATNF for different values of k compared with the running
time of ETNF. The numbers marked with † are estimated due to the computation limits of ETNF.

GRAPH
Running Time of ATNF over Running Time of ETNF

k = 2 k = 4 k = 8 k = 16 k = 32 k = 64 k = 128
TOPOLOGY 0.00141 0.00142 0.00149 0.00171 0.00274 0.00577 0.01825
ROLLERNET 0.06534 0.09701 0.13967 0.23038 0.53422 0.13624 0.12522
ENRON 0.05990 0.02918 0.06408 0.11212 0.22432 0.70213 1.02517
COLLEGE 0.00289 0.00373 0.00527 0.00965 0.03065 0.09292 0.29230
WIKI-ELECTION 0.00070 0.00088 0.00163 0.00302 0.00730 0.02352 0.08301
FACEBOOK-WALLPOST 0.00012 0.00019 0.00026 0.00050 0.00138 0.00456 0.01384
IMDB-ADVENTURE 0.00011 0.00014 0.00016 0.00022 0.00046 0.00114 0.00326
IMDB-HORROR 0.00013 0.00014 0.00014 0.00015 0.00024 0.00044 0.00107
IMDB-THRILLER 0.00012 0.00012 0.00013 0.00015 0.00028 0.00066 0.00171
IMDB-CRIME 0.00010 0.00011 0.00013 0.00017 0.00035 0.00086 0.00252
IMDB-ROMANCE 0.00010 0.00011 0.00012 0.00017 0.00031 0.00082 0.00241
IMDB-ACTION 0.00012 0.00013 0.00014 0.00018 0.00037 0.00086 0.00256
IMDB-COMEDY 0.00009 0.00010 0.00010 0.00013 0.00022 0.00049 0.00134
IMDB-DRAMA 0.00008 0.00009 0.00010 0.00012 0.00018 0.00034 0.00090
IMDB-ALL† 0.00006 0.00006 0.00007 0.00007 0.00009 0.00015 0.00034
TWITTER† 1.2 E-6 1.6 E-6 2.4 E-6 5.2 E-6 0.00002 0.00005 0.00016

Table 4. Ratio between the running time of ATNF and the one of ETNF for different values of k (lower is
better). The values for the graphs marked with † are estimated due to the computational limits of ETNF.

time of ETNF. This improvement is even more striking for bigger graphs, where the running time of
ATNF further reduces to 0.1%.

For the two biggest graphs, i.e. IMDB-ALL and TWITTER, we were not able to run ETNF, due to
the large amount of time required by the method. For this reason, we have estimated its running
time (reported with † in Table 3). The estimation is based on the fact that ETNF runs n single-source
procedures, each one from a different source node. It is possible to estimate the average running time
µ of a single-source procedure, sampling Θ( logn

ε2 ) sources and computing the average time µ. It is easy
to show that this is an unbiased estimator and that, by using the Hoeffding’s inequality, |µ− µ| is
bounded with high probability by ε · r, where r is an upper bound on the maximum time needed by
a single-source procedure, e.g. the time for visiting all the edges. By multiplying µ by n, we get an
estimation of the running time of ETNF. We have verified experimentally that the order of magnitude
reported by our estimation is consistent with the actual time used by ETNF for the smaller graphs. As a
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City Stops Edges Day R G City Stops Edges Day R G
Adelaide 7 548 404 300 12/12/16 40 4 Belfast 1 917 122 693 09/05/16 30 3
Berlin 4 601 1 048 218 04/25/16 30 3 Bordeaux 3 435 236 595 12/12/16 30 3
Brisbane 9 645 392 805 12/12/16 40 4 Canberra 2 764 124 305 01/09/17 30 3
Detroit 5 683 214 863 12/12/16 30 3 Dublin 4 571 407 240 12/12/16 20 2
Grenoble 1 547 114 492 11/14/16 20 2 Helsinki 6 986 686 457 12/12/16 30 3
Kuopio 549 32 122 12/12/16 10 1 Lisbon 7 073 526 179 11/21/16 30 3
Luxembourg 1 367 186 752 11/28/16 20 2 Melbourne 19 493 1 098 227 12/12/16 50 5
Nantes 2 353 196 421 12/12/16 20 2 Palermo 2 176 226 215 09/22/14 20 2
Paris 11 950 1 823 872 12/12/16 35 4 Prague 5 147 670 423 12/12/16 30 3
Rennes 1 407 109 075 12/19/16 20 2 Rome 7 869 1 051 211 11/06/17 20 2
Sydney 24 063 1 265 135 12/19/16 50 5 Toulouse 3 329 224 516 12/12/16 20 2
Turku 1 850 133 512 12/12/16 10 1 Venice 1 874 118 519 12/12/16 20 2
Winnipeg 5 079 333 882 12/12/16 30 3

Table 5. The 25 cities included in the public transport network dataset [14]. The Stops column indicates
the number of nodes, the Edges column the number of temporal edges, the Day column the day in
which the data were collected, the R column the city’s radius (in km), and the G column the group the
city belongs to.

result, applying our estimation for the biggest graphs,1 ETNF requires 622 185 seconds (more than a
week) for IMDB-ALL and 25 771 840 seconds (more than 198 days) for TWITTER. On the other hand,
setting k = 128, ATNF is able to approximate |N (I)| in only 112 seconds for the former graphs and in
71 minutes for the latter one, as shown in Table 3. Comparing these running times with our estimates
(last two rows of Table 4), ATNF turns out to be four orders of magnitude faster than ETNF.

5. Case Study: Comparison of 25 public transport networks

In this section, we will show how the ATNF algorithm for computing the approximation of the
temporal neighborhood functions can be applied in order to perform an exhaustive analysis of some
reachability properties of several temporal graphs in a very efficient way. In particular, we will make
use of a recently published collection of 25 cities’ public transport networks [14]. This collection is
available in multiple formats including the temporal edge list for a specific day, which is the format we
use here. The list of the 25 cities is summarized in Table 5, where, for each city, we provide the number
of stops (that is, the number of vertices of the temporal graph), the number of temporal edges, the day
in which the data were collected, and the radius R around the city’s central point that should cover all
the continuous and dense parts of the city and its public transport network [14]. We have grouped the
25 cities into five groups according to the vale of R. In particular, group i contains all the cities such
that 10(i− 1) < R ≤ 10i, for 1 ≤ i ≤ 5.

Our goal is to analyze the reachability efficacy of each public transport network. To this aim, we
compute the (approximate) value of the temporal neighborhood functions corresponding to different
time intervals of the day in which the data were collected. In particular, we divide the interval between
6am and 9pm into 30, 15, and 10 intervals of length 30, 60, and 90 minutes, respectively. For each
interval I = [tα, tω ], we compute the approximate value of the temporal neighborhood function |N (I)|
(normalized with respect to the number of all possible pairs of nodes), by using the ATNF algorithm. In
the following, we will represent the distributions of these values by reachability diagrams such as the
one shown in Figure 5, which refers to the city of Adelaide.

Observe that, in the case of transport networks, going from one stop to another, i.e. following
an edge, takes some time. Therefore, in our dataset, the temporal edge list contains the starting time

1 A single-source procedure requires on the average 1.18 seconds for IMDB-ALL and 7.33 seconds for TWITTER, with relative
standard deviation respectively of 17.49% and 10.87%.
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Figure 5. The reachability diagram of the public transport network of the city of Adelaide, in which
the interval between 6am and 9pm has been split into 15 intervals of one hour each.

se and the arrival time ae of each temporal edge e between two nodes u and v. In order to apply our
approach, we have used the following transformation. For each edge e in the dataset from u to v with
starting time se and arrival time ae, with ae − se > 1, we have replaced e with a pair of two edges: one
from u to ze with appearing time se, and the other from ze to v with appearing time ae − 1, where ze is
a new dummy node. For the edges e from u to v in the dataset such that ae − se = 1, we replace e by an
edge from u to v with appearing time se. It is easy to show that there is a one-to-one correspondence
between the feasible journeys in the original dataset and the sequences induced by the non-dummy
nodes in the temporal paths of the resulting temporal graph. Moreover, it is worth remarking that,
when computing the temporal neighborhood function in our transformed temporal graph, we have to
focus only on non-dummy nodes. To this aim, we have slightly modified our approach2 to exclude the
dummy nodes from the sketches of our reverse temporal cones and, hence, not to count them in the
final estimation of the temporal neighborhood function.

In the left column of Figure 6, we show, for each city group, the reachability diagrams of all
cities in the group in the case in which we consider intervals of 60 minutes (these diagrams have been
obtained by running 20 times the approximation algorithm with k = 64, and by taking the average
values). As can be seen, in the case of the first and the last group, the two cities included in the group
behave quite similarly, even if the city of Sydney seems to be more efficient in correspondence with the
two peaks of its diagram at 8am and at 5pm (which might be considered as the rush hours of the day).
In the other three groups, instead, there is clearly a city more efficient than the others of the group (that
is, Luxembourg in Group 2, Berlin in Group 3, and Adelaide in Group 4). In each of these groups, the
existence of a second more efficient city (that is, Palermo, Winnipeg, and Paris) is also evident. While
in Group 2, two cities (that is, Rome and Rennes) fight for the third position, in Group 3 all the other
cities are basically equivalent.

Note that we are not evaluating the whole quality of a public transport service, which of course
depends on many other factors, such as robustness, safety, reliability, and customer service; instead
we are only comparing different public transport networks in terms of their temporal neighborhood
functions during a day. In particular, the reachability diagram of a public transport network should
only be interpreted as an indicator of the percentage of the pairs of nodes which are connected in

2 In the base case in Section 3, it is enough to exclude u fromR(u, [tα, tα]), whenever u is a dummy node.
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Figure 6. The comparison of the reachability diagrams (left) and of the density diagrams (right) of the
25 public transport networks.
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Figure 7. The comparison of the reachability diagrams with 30 intervals of 30 minutes each (left), and
with 10 intervals of 90 minutes each (right) of the 25 public transport networks.
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each interval, with respect to the total number of pairs of nodes. It is also worth emphasizing the
fact that, in order to use these diagrams for comparing two public transport networks of two cities,
we must implicitly assume that the nodes of a network are uniformly spread in the circle of radius
R corresponding to the network itself. It clearly does not make sense to compare a transportation
network in which nodes are concentrated in a small sector of the circle with one in which nodes are
uniformly spread, since this would turn out into a greater efficiency of the first network with respect to
the second one. Unfortunately, we are not able to verify that nodes are uniformly spread in the circle,
and we can only assume that this requirement is satisfied.

One could suspect that results similar to the ones shown in the left column of Figure 6 could be
obtained by simply considering the temporal density of the original transport networks. For each
interval I = [tα, tω ], let m(I) denote the number of edges from u to v with both starting and arrival
time in I. We then define the temporal density in the interval I as δ(I) = m(I)

n , where n denotes the
number of nodes of the network. In the right column of Figure 6, we show, for each city group, the
density diagrams of all cities included in the group. As it can be seen, in Group 1, 2, 3 and 5, the first
city is the same as in the reachability diagrams. In Group 4, instead, Paris seems to have the densest
public transport network, even if it is not the first city in terms of reachability cone sizes. Moreover,
while the reachability and the density diagrams of Group 1 and 5 seem to be quite consistent, this is
not the case for Groups 2 and 3. For instance, in Group 2, Rome is denser than Palermo, but Palermo
outperforms Rome in terms of reachability, while in Group 3 this phenomenon happens in the case of
Prague and Winnipeg. In other words, the reachability diagram seems to provide some information
that is not explicitly given by the density diagram. It is also worth observing how several cities present
two peaks in their reachability and density diagrams which we can assume correspond to the two
rush hours of the day. This seems to indicate that these cities, in correspondence of these rush hours,
increase the number of connections and provide a better service in terms of the number of pairs of
connected nodes.

In Figure 7, instead, we compare the reachability diagrams of the five groups obtained with time
intervals of length 30 and 90 minutes, respectively (these diagrams should be also compared to the
reachability diagrams shown in the left column of Figure 6 which are obtained with time intervals of
length 60 minutes). It is worth observing that in the second and in the third group considering shorter
time intervals makes the city with the better diagram perform even better compared to the others, and
it basically nullifies the differences among the other cities. When larger time intervals are analyzed, it
seems that the only effect we get is that the reachability diagrams are systematically shifted up. This
is quite reasonable, since we can expect that, in a time interval of one hour and half, a significant
percentage of all possible pairs of nodes are now connected. It is anyway worth noting that, in the case
of the three cities in Group 4 and of the two cities in Group 5, even with time intervals of 90 minutes,
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Figure 8. The reachability diagrams of three sample cities with different values of k.
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this percentage is quite low (less than 15% in Group 4 and less than 3% in Group 5). This suggests that
in order to obtain a globally almost total connectivity, these cities require trips of quite great duration.

Finally, in Figure 8 we show the reachability diagrams of three sample cities obtained with
different values of k in ATNF (the number of experiments is always 20). As it can be seen, the diagrams
are almost identical, which might suggest that even k = 32 could be used in order to reduce the
execution time. However, we decided to use k = 64 in the previously described experiments in order
to further increase the approximation quality of the results.

As we said at the beginning of this section, the main goal of this analysis has been to describe a case
study in which, by using ATNF, we can extremely reduce the total execution time of the experiments.
For example, with k = 64 and 20 experiments, producing the reachability diagrams of all cities
with respect to intervals of length 60 minutes, requires approximately 2.3 hours. The time to get the
exact values of the temporal neighborhood functions for each time interval by using ETNF, is instead
approximately equal to 68.2 hours, that is, between one and two orders of magnitude bigger than the
running time of ATNF, consistently with the results shown in Section 4.

6. Conclusions

In this paper, we have proposed a new algorithm for approximating the temporal neighborhood
function of a temporal network, which is based on the bottom-k sketch technique. We have
experimentally validated the quality and the time performance of our algorithm, by comparing
it with a recently proposed scan-based algorithm. We showed that our algorithm is able to obtain good
quality results (typically with a mean relative error of 5% or less) in a very small fraction of the time
of the exact algorithm (typically 0.3% or less). Finally, we have applied our algorithm to the analysis
of the reachability properties of 25 public transport networks and showed that the neighborhood
function gives some non-trivial insight about the number of pairs of stops which are reachable from
one-another.

From a more technical point of view, a quite natural and straightforward extension of our work
consists of applying other sketch techniques, such as, for example, the ones based on the probabilistic
counting approach [7,8,38]. We are confident that by using these other techniques our results can be
improved both in terms of approximation quality and of execution time. A comparison of the different
sketch techniques for approximating the temporal neighborhood function is beyond the scope of this
paper, whose main goal is showing how these techniques are extremely effective when applied to
temporal networks.

More interestingly, the approach we have described in this paper can also be applied to compute a
different kind of temporal cones. Intuitively, these cones would allow us, for each node u of a temporal
graph G = (V, E), to determine what is the latest starting time from any other node v that can reach u
in a specified interval I = [tα, tω ], in order to arrive at u not later than tω. By appropriately adapting
the dynamic programming algorithm for computing the reverse temporal cones, we can show that
the latest starting time cones can also be computed in time O(nm) and space O(n2m) (or O(nm) if we
do not need to store all the intermediate results). Moreover, in order to improve the efficiency of the
algorithm, we can use, even in this case, the bottom-k sketch technique, exactly as we have done in the
case of the reverse temporal cones.

Finally, a more general question is whether other heuristics can be used in order to compute graph
metrics for which the sketch approach does not seem to be very efficient in the case of classical graphs.
For example, a promising research direction is to define an analogue of the backward breadth-first
search for temporal networks, in order to apply techniques which have been extremely powerful for
computing the diameter of a graph [39,40] or to apply sampling techniques for computing centrality
measures in temporal networks [41,42].
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