The community structure of a graph is defined in various ways in the literature: (i) Partition, where nodes can belong to only one community. This vision is unrealistic and may lead to poor results because most nodes belong to several communities in real-world networks. (ii) Overlapping community structure, which is the most natural view, but is often very difficult to identify in practice due to the complex structure of real-world networks, and the huge number of such possible communities. (iii) Ego-centered community which focuses on individual nodes' communities and seems to be a good compromise. In this paper we investigate the third vision; we propose a new similarity measure between nodes based on opinion dynamics to unfold ego-centered communities. We call it the carryover opinion. In addition to be parameter-free, the carryover opinion can be calculated in a very time-efficient way and can thus be used in huge graphs. We also go further in the idea of ego-centered communities by introducing the new concept of multi-ego-centered communities, i.e., focusing on the communities of a set of nodes rather than of a single node. A key idea is that, although one node generally belongs to numerous communities, a small set of appropriate nodes can fully characterize a single community.

### Next Event(s)

**Contribution à la qualité des informations dans les réseaux sociaux : Identifier et analyser les motifs récurrents pour détecter les phénomènes sociaux**Manel Mezghani*2017, March 16, Room 24-25/405*- affinity index algorithm analysis antipaedo attack bipartite blog network blogs capitalisme social Cascade centrality clustering communities community detection community structure complex network complex networks complex systems compression connected graphs data mining debian degree distribution degree peeling diameter diffusion diffusion phenomena distributed measurements DynamicNetworks dynamics edge-Markovian evolving graph eDonkey ego-centered ego-centered communities email epidemiology event detection evolving graphs evolving networks exploration failure fixed points formal concepts gossip graph graph algorithm graph decompositions Graphs hierarchical clustering honeypot influence influence ranking interaction networks internal links internet Internet topology intrinsic time IP-level ip exchanges lattice leaders link prediction long term communities markovian model measurement mesure d’influence metrics Metrology mobile networks Modelling modularity multi-ego-centered communities multi-scale multipartite graph network dynamics node proximity node similarity opinion dynamics outliers p2p P2P dynamics P2P networks parametric paris paris-traceroute path-vector routing pedophile activity phone power-law radar random graph random walks reachability robustness routing routing tables scale-free security simulation simulations sir social networks spreading spreading cascades stability statistical analysis stochastic process three-state cellular automata time-varying Topology traceroute triangles twitter UDP user profiles viral marketing visualization web wifi