Many contributions rely on the degree distribution of the Internet topology. However, current knowledge of this property is based on biased and erroneous measurements and is subject to much debate. Recently, a new approach, referred to as the Neighborhood Flooding method, was proposed to avoid issues raised by classical measurements. It aims at measuring the neighborhood of Internet core routers by sending traceroute probes from many monitors distributed in the Internet towards a given target router. In this paper, we investigate the accuracy of this method with simulations. Our results show that Neighborhood Flooding is free from the bias highlighted in the classical approach and is able to observe properly the exact degree of a vast majority of nodes in the core of the network. We show how the quality of the estimation depends on the number of monitors used and we carefully examine the influence of parameters of the simulations on our results. We also point out some limitations of the Neighborhood Flooding method and discuss their impact on the observed distribution.

### Next Event(s)

**Contribution à la qualité des informations dans les réseaux sociaux : Identifier et analyser les motifs récurrents pour détecter les phénomènes sociaux**Manel Mezghani*2017, March 16, Room 24-25/405*- affinity index algorithm analysis antipaedo attack bipartite blog network blogs capitalisme social Cascade centrality clustering communities community detection community structure complex network complex networks complex systems compression connected graphs data mining debian degree distribution degree peeling diameter diffusion diffusion phenomena distributed measurements DynamicNetworks dynamics edge-Markovian evolving graph eDonkey ego-centered ego-centered communities email epidemiology event detection evolving graphs evolving networks exploration failure fixed points formal concepts gossip graph graph algorithm graph decompositions Graphs hierarchical clustering honeypot influence influence ranking interaction networks internal links internet Internet topology intrinsic time IP-level ip exchanges lattice leaders link prediction long term communities markovian model measurement mesure d’influence metrics Metrology mobile networks Modelling modularity multi-ego-centered communities multi-scale multipartite graph network dynamics node proximity node similarity opinion dynamics outliers p2p P2P dynamics P2P networks parametric paris paris-traceroute path-vector routing pedophile activity phone power-law radar random graph random walks reachability robustness routing routing tables scale-free security simulation simulations sir social networks spreading spreading cascades stability statistical analysis stochastic process three-state cellular automata time-varying Topology traceroute triangles twitter UDP user profiles viral marketing visualization web wifi